Aerospace
Blockset

For Use with Simulink®

Modeling
Simulation

Implementation

User’s Guide --.‘\The MathWorks

Version 1

X LB

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset User’s Guide
© COPYRIGHT 2002-2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: July 2002 New for Version 1 (Release 13)
July 2003 Revised for Version 1.5 (Release 13SP1)
October 2004 Revised for Version 1.5.1 (Release 13SP2)

Online only
Online Only
Online Only

Using This Guide

Using ThisGuide vi
Waysto Get HelpOnline vii
For Further Help and Feedback vii
Typographical Conventions ix
Aerospace Units i x

Introducing the Aerospace Blockset

1]

Welcome to the Aerospace Blockset 1-2
What’s in This Chapter i, 1-2
Related Products 14
Opening the Aerospace Blockset in Simulink 1-5
Opening the Aerospace Blockset on Windows Platforms 1-5
Opening the Aerospace Blockset on UNIX Platforms 1-8
RunningaDemoModel 1-9
What This Demo Illustrates 1-9
Openingthe Model 1-9
RunningtheDemo 1-14
Modifying the Model 1-17

Contents

Getting Started with the Aerospace Blockset

2

Introducing the Aerospace Blockset Libraries 2-2
Actuators Library 2-2
Aerodynamics Library 2-2
Animation Library 2-2
Environment Library 2-2
Equations of Motion Library 2-3
Flight Parameters Library 2-3
GNC Library e 2-3
Mass Properties Library 2-4
Propulsion Library 24
Utilities Library 24

Creating AerospaceModels 2-5

Building a Simple Actuator System 2-6
Buildingthe Model 2-6
Running the Simulation 2-15

Case Studies

3|

Missile Guidance System 3-2
Missile Guidance System Model 3-2
Modeling Airframe Dynamies 3-3
Modeling a Classical Three-Loop Autopilot 3-10
Modeling the Homing Guidance Loop 3-12
Simulating the Missile Guidance System 3-18
Extending the Model 3-20
References 3-20

NASA HL-20 Lifting Body Airframe 3-22
NASA HL-20 LiftingBody 3-22
The HL-20 Airframe Model 3-23
References 3-35

ii Contents

Ideal Airspeed Correction 3-36

Airspeed Correction Models 3-36
Measuring Airspeed e 3-37
Modeling Airspeed Correction 3-38
Simulating Airspeed Correction 341

Block Reference

4|

Blocks —By Categorycc0iiiiiiinnnn.. 4-2
Actuators Library 4-3
Aerodynamics Library 4-3
Animation Library 4-3
Environment Library 4-3
Flight Parameters Library 4-5
Equations of Motion Library 4-5
GNC Libraryt e 4-6
Mass Properties Library 4-8
Propulsion Library 4-8
Utilities Library 4-8

Blocks — Alphabetical List 4-11

Index

iii

iv Contents

Using This Guide

Using This Guide (p. vi)

Ways to Get Help Online (p. vii)
Typographical Conventions (p. ix)
Aerospace Units (p. x)

Overview of how to find help
Using the online help system to view documentation
Summary of special fonts and notations

Physical units used in the Aerospace Blockset

Using This Guide

Using This Guide

vi

This guide contains tutorial sections that are designed to help you become
familiar with using the Aerospace Blockset with Simulink®, as well as a
reference section for finding detailed information on particular blocks in the
blockset:

¢ Chapter 1, “Welcome to the Aerospace Blockset” provides an overview of
fundamental Aerospace Blockset concepts.

® Chapter 1, “Getting Started with the Aerospace Blockset” introduces
modeling concepts and an introductory tutorial.

® Chapter 2, “Case Studies” presents example applications of the Aerospace
Blockset.

¢ Chapter 3, “Block Reference” describes each block’s operation, parameters,
and characteristics.

Use this guide in conjunction with the software to learn about the powerful
features of the Aerospace Blockset.

Note The User’s Guide documentation for the Aerospace Blockset assumes
that you are familiar with Simulink. See the Simulink documentation for
more information.

Using This Guide

Ways to Get Help Online

vii

There are a number of easy ways to get online help while you work with
Aerospace Blockset:

® Help Browser — There are several ways to open the Help browser:
= Select Full Product Family Help from the MATLAB Help menu.
= Select Help from the MATLAB View menu.
= Enter doc at the command line.
Use the Contents pane on the left of the Help browser to find a section or
chapter. Use the Search and Index features to find specific words.

® Block Library Browser — Click Help on the Aerospace library menu bar to
open online help on Simulink, blocks, shortcuts, S-functions, and demos.

e Context-sensitive help — To access the help for a block, right-click the block or
click Help on the block’s dialog box.

® Command line — Enter doc('block name') at the command line to access
the help for a block with the name block name. Spaces and capitalization in
the block name are ignored.

If the same block name appears in other blocksets, MATLAB returns an
Overloaded methods warning in the Command Window to flag those
instances.

e Complete Aerospace Blockset block reference — Expand the Aerospace
Blockset entry in the Help Navigator, and select Blocks - By Category or
Blocks - Alphabetical List.

® Help desk (via the Web) — Use a Web browser or the Help browser to connect
to the MathWorks Web site at www.mathworks.com. Follow the
Documentation link on the Support Web page for remote access to the
documentation.

For Further Help and Feedback

The MathWorks hopes that you find the Aerospace Blockset powerful and easy
to use. Your suggestions and comments are welcome.

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

Using This Guide

doc@mathworks.com Documentation error reports

For more contact and program information, visit the MathWorks Web site at
www.mathworks.com.

viii

Using This Guide

ix

Typographical Conventions

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,
operators, and constants

Monospace font

Boldface with book title caps

Italics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=25

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = freqspace(n, 'whole')

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.

[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method")

Using This Guide

Aerospace Units

The main blocks of the Aerospace Blockset support standard measurement
systems. The Unit Conversion blocks support all units listed in the following

table.

Quantity

Metric (MKS)

English

Length

Mass

Velocity

Acceleration

Force

Angle
Inertia

Angular velocity

Angular
acceleration

meter (m)
kilogram (kg)

meters/second (m/s),
kilometers/second (km/s),
kilometers/hour (km/h)

meters/second?

(m/s?),
kilometers/second?
(km/s?), kilometers/hour
(km/h), kilometers/second
(km/s)

Newton (N)

radian (rad), degree
(deg), revolution

kilogram-meter2 (kg—mz)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

radians/second? (rad/s?),
degrees/second? (deg/s?),
revolutions/minute (rpm),
revolutions/second (rps)

inch (in), foot (ft), mile
(mi), nautical mile (nm)

slug (slug), pound mass
(Ibm)

inches/second (in/sec),
feet/second (ft/sec),
miles/hour (mph), knots

inches/second? (in/s?),
feet/second? (ft/s?),
miles/hour (mph),
miles/second (mps)

pound (I1b)

radian (rad), degree
(deg), revolution

slug—foot2 (slug-ft?)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

radians/second? (rad/s?),
degrees/second? (deg/s?),
revolutions/minute
(rpm), revolutions/second
(rps)

Using This Guide

xi

Quantity Metric (MKS) English
Temperature Kelvin, Celsius Fahrenheit, Rankine
Density kilogram/meter? (kg/m?) pound mass/foot?
(Ibm/ft3), slug/foot3
(slug/ft3), pound
mass/inch?® (Ibm/in®)
Pressure Pascal pound/inch? (psi),

pound/foot? (psD),
atmosphere (atm)

Using This Guide

-X1ii

Introducing the Aerospace
Blockset

The Aerospace Blockset lets you model aerospace systems for use with Simulink® and MATLAB®.

Welcome to the Aerospace Blockset (p. 1-2) Introduction to the Aerospace Blockset and the
Simulink environment

Related Products (p. 1-4) Products you might want to use with the Aerospace
Blockset and requirements for virtual reality
visualization

Opening the Aerospace Blockset in Simulink How to open the Aerospace Blockset in Simulink
(p. 1-5)

Running a Demo Model (p. 1-9) Learn how to execute an aerospace model in
Simulink, examine the results, and modify the
model settings and parameters

1 Intfroducing the Aerospace Blockset

1-2

Welcome to the Aerospace Blockset

The Aerospace Blockset brings the full power of Simulink to aerospace system
design, integration, and simulation by providing key aerospace subsystems
and components in the adaptable Simulink block format. From environmental
models to equations of motion, from gain scheduling to animation, the blockset
gives you the core components to assemble a broad range of large aerospace
system architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink to develop your aerospace
system concepts and to efficiently revise and test your models throughout the
life cycle of your design. Use the Aerospace Blockset together with Real-Time
Workshop® to automatically generate code for real-time execution in rapid
prototyping and for hardware-in-the-loop systems.

What's in This Chapter

This chapter introduces you to the capabilities of the Aerospace Blockset and
its relationship to other MathWorks products:

¢ “Related Products” on page 1-4
® “Opening the Aerospace Blockset in Simulink” on page 1-5

Welcome to the Aerospace Blockset

Notice THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR
CERTIFIED BY ANY GOVERNMENT AGENCY OR INDUSTRY
REGULATORY ORGANIZATION OR ANY OTHER THIRD PARTY. THE
PROGRAMS SHOULD NOT BE RELIED ON AS THE SOLE BASIS TO
SOLVE A PROBLEM WHOSE INCORRECT SOLUTION COULD RESULT
IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE NOT
DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE
FOR USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR
OTHER INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF
WHICH CAN REASONABLY BE EXPECTED TO CAUSE DEATH OR
PERSONAL INJURY OR PROPERTY OR ENVIRONMENTAL DAMAGE.
LICENSEE AGREES THAT PRIOR TO USING, INCORPORATING OR
DISTRIBUTING THE PROGRAMS IN ANY PRODUCT, IT WILL
THOROUGHLY TEST THE PRODUCT AND THE FUNCTIONALITY OF
THE PROGRAMS IN THAT PRODUCT AND BE SOLELY RESPONSIBLE
FOR ANY PROBLEMS OR FAILURES.

1-3

1 Intfroducing the Aerospace Blockset

Related Products

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Aerospace Blockset. In particular, the
Aerospace Blockset requires these products:

e MATLAB 6.5.1

¢ Control System Toolbox 5.2
® Simulink 5.1

Virtual Reality-Based Visualization

The optional virtual reality-based visualization blocks in the Aerospace
Blockset require the Virtual Reality Toolbox Version 3.1. The Virtual Reality
Toolbox includes a default viewer, which works on all platforms.

You can also install the blaxxun Contact plug-in viewer, version 4.4, for Web
browsers. This plug-in is included with the Virtual Reality Toolbox and works
on Windows platforms only. It requires Java-enabled Microsoft Internet
Explorer 4.0, Netscape Navigator 4.0, or later version Web browser.

For more information about any of these products

¢ Consult the online documentation for that product if it is installed or if you
are reading the documentation from the CD

® Visit the MathWorks Web site, at www.mathworks.com; see the “Products”
section

Product Description

Real-Time Workshop Generate C code from Simulink models
Real-Time Workshop Generate production code for embedded
Embedded Coder systems

Stateflow® Design and simulate event-driven systems
Stateflow® Coder Generate C code from Stateflow charts
Virtual Reality Toolbox Create and manipulate virtual reality worlds

from within MATLAB and Simulink

http://www.mathworks.com

Opening the Aerospace Blockset in Simulink

Opening the Aerospace Blockset in Simulink

To get started with the Aerospace Blockset, you need to use Simulink. All the
blocks in the Aerospace Blockset are designed for use together with the blocks
in the Simulink libraries. This section describes how to open the Aerospace
Blockset on Windows and on UNIX platforms:

“Opening the Aerospace Blockset on Windows Platforms” on page 1-5
“Opening the Aerospace Blockset on UNIX Platforms” on page 1-8

Opening the Aerospace Blockset on Windows
Platforms
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the # icon in the MATLAB toolbar, or enter

simulink

at the command line.

The Simulink Libraries

The libraries in the Simulink Library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset

On Windows platforms, the Simulink Library Browser opens when you start
Simulink. The left pane contains a list of all the blocksets that you currently
have installed.

1 Intfroducing the Aerospace Blockset

1-6

[simulink Library Browser
File Edit WYiew Help

=101 x|

DS =

Actuators: aeroliby AActuators

| v

[l W] Simulink

£ | Aerospace Blackset

..... 2 Actuators

..... | Aerodynamics

..... 2+ Animation

[2 Enwironmenk

[2+ Equations of Mation

----- 2] Flight Parameters

[B GHC

..... y Mass Properties

..... 2+ Propulsion

- 2 Utilities

- il COM Reference Blockset

- W Communications Elacksst

----- W Control System Toolbox

----- W Data Acquisition Elacksst

- W Embedded Target for Infineon C1E6E
- §| Embedded Target for Motorola® HC1
- §| Embedded Target for Motorola® MPC
(- N Embedded Target For OSEKVDR®
[
[
[
A

- El Embedded Target for TI 2000 DSP
- El Embedded Target for TI C6000 DSP

+-- N Fuzzy Logic Toolbox M
I | C

]

]
(]

[+]

B

[+__
=<

e

A G

[+] [+
El .|
i

«Fs

[+]
E]
a
[=}
I
E]

[+]
x
-
n
—

e+

Aerodynamics
Animation
Environment
Equations of Mation
Flight Parameters
GHC

Mazz Properties

.
A Propulzion

Utilities

The first item in the list is the Simulink blockset itself, which is already
expanded to show the available Simulink libraries. Click the F symbol to the
left of any blockset name to expand the hierarchical list and display that

blockset’s libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line,

enter

aerolib

Double-click any library in the window to display its contents. The following

figure shows the aerolib library window.

Opening the Aerospace Blockset in Simulink

ElLibrary: aeroliby1 N m]
File Edit Wiew Format Help
DSEHE| $=R (22 hEE T
=
M-.v\ =k
|
H(s) YEls
Equations Pmpulsion Actuators GG Envimnrment
of otion
Tas . B fte—m
== s] iz =
*5 cas }r o w
Asmdynamics hlass Flight Utilities Animation
Fropernies FPammeter=s
Aemspace Blockset 1.5
Infi [
e Copyright 1900-2003 The MathWarks, Inc. =mes

For a complete list of all the blocks in the Aerospace Blockset by library, see

“Blocks — By Category” on page 3-2.

See the Simulink documentation for a complete description of the Simulink

Library Browser.

1 Intfroducing the Aerospace Blockset

Opening the Aerospace Blockset on UNIX Platforms

On UNIX platforms, the Simulink Library window opens when you start
Simulink. To open the Aerospace Blockset, double-click the Aerospace
Blockset icon to open the Aerospace Blockset.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the aerolib library window.

ifsLibrary: aerolib¥l :0] 4]
File Edit Miew #omsl |
s
will~ =
¥
H(s) Y
Erjuations Fropulsion Artuators GMNC Environment
of Mation
Tes B fte—sm
] iz D{;:
LN ﬁ' L2 - };x/l\ w"
Agrodyriamics Mass Flight Litilities Arimatian
Fropetties Parameters
Aerospace Blockset 1.5
liie Copyright 1880-2003 The MathWorks, Inc. T

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — By Category” on page 3-2.

1-8

Running a Demo Model

Running a Demo Model

This demo model uses some of the blocks in the Aerospace Blockset to simulate
a three-degrees-of-freedom missile guidance system. You will see how the demo
implements the Aerospace Blockset in conjunction with other Simulink blocks.

The demo model simulates a missile guidance system with a target acquisition
and interception subsystem. The model implements a nonlinear representation
of the rigid body dynamics of the missile airframe, including aerodynamic
forces and moments. In addition, the missile autopilot was developed using the
trimmed and linearized missile airframe, and the missile homing guidance
systems regulates missile acceleration and measures the distance between the
missile and the target.

Note For more information on the missile guidance model, see Chapter 2,
“Case Studies.”

What This Demo lllustrates

The missile guidance demo illustrates the following features of the Aerospace
Blockset:

® Representing bodies and degrees of freedom with the Equations of Motion
library blocks

¢ Using the Aerospace Blockset with other Simulink blocks
¢ Using the Aerospace Blockset with other Mathworks products like Stateflow

® Feeding in and feeding out Simulink signals to and from Aerospace Blockset
blocks with Actuator and Sensor blocks

¢ Encapsulating groups of blocks into subsystems

¢ Visualizing and animating an aircraft with the Animation library blocks

Opening the Model

To open a Aerospace Blockset demo from the Help browser, open the Demos
library in the Help browser by clicking the Demos tab in the Help Navigator
pane on the left. Locate the demo in the list and open it. You can also open
demos by entering the demo name at the command line.

1-9

1 Intfroducing the Aerospace Blockset

1-10

Here is the general procedure for starting Aerospace Blockset demos from the
Start button of the MATLAB desktop:

1 Click the Start button.
2 In the pop-up menu, select Blocksets, then Aerospace, and then Demos.

This opens the MATLAB Help browser with Demos selected in the left Help
Navigator pane.

3 Double-click Three Degrees of Freedom Guided Missile from the list of
models in the list.

Alternatively, you can open the same MATLAB Demos window by entering
demos at the MATLAB command line.

To get started quickly with this specific demo, you can enter aeroblk guidance
at the MATLAB command line.

The Block Diagram Model

The block diagram model opens in a model window:

[Z]aerablk_guidance =101 x|
File Edit ¥ew Smulation Farmat Tools Help
DEeE&| %2R) r = |Nm e REE T ®
Demanded loak angle during target search LX‘,Z‘
Sigma_d
Sigmadot || Sigmadot sigma_d Yo Ze > 5,2,
a {0 fedl—plted Aitude »
Look fagle
Targe 3DoF Animation
Positio Miszile > Target Rm [Rm Miss
Separation a

SeekenTracker Guidance

Missile Body Angular Rate

Missile Attitude

Wissike Position

Double clicke here to go to a
demo on trimming and linearizing

Ready [100% [od=4s v

Running a Demo Model

At the same time, a Stateflow statechart appears that shows a chart for the

guidance control processor.

<) stateflow {chart) aeroblk_guidance/Guidance;Guidance Processor (Updated
File Edit Simulation Wiew Tools Add Help

=10l x|

et sma@ a2 |asi ri- BRA0 B

Target_Search
en: Mode=1, Soma_ck=yinc r=100,Acquire_times=t|

du: Sioma_c=Sigma,_c+0.01 4incr; " Fuz

[Acquire==C] E -

.. .
- Y

e
[in{Guidance. Radar_Guided)&&Range=1000] E

=l

‘Heady

What the Model Contains

Note some features of the model:

¢ The Airframe & Autopilot subsystem implements the ISA Atmosphere Model
block, the Incidence & Airspeed block, and the 3DoF (Body Axes) block, along

with other Simulink blocks.

The airframe model is a nonlinear representation of rigid body dynamics.
The aerodynamic forces and moments acting on the missile body are
generated from coefficients that are nonlinear functions of both incidence

and Mach number.

1-11

1 Intfroducing the Aerospace Blockset

E!aernhlk_guidance_airframe i m| ﬂ

File Edit View Simulation Format Tools Help

D‘ﬁné‘%ﬂ‘9Q|} u | Nomal '”i

Model used to trim and linearize airframe

T
= (mis) -
SR
P =y i Height
P flginy
Atrnosphere Waodel
Fho i
Attitude
> D

Theust Py I

Fin Deflection

Aeradynamics &
Equations of Motion

Double-click here to generate linearizations I

Ready [100% lodeds v

¢ The model implements the missile autopilot as a classical three-loop design
using measurements from an accelerometer located ahead of the missile’s
center of gravity and from a rate gyro to provide additional damping.

1-12

Running a Demo Model

E!aernhlk_guidante,‘-"nirframe & Autopilot/Autopilot - |E| ll

File Edit ‘“iew Simulation Format Tools Help

O SEES| ¢ =R b =|bmd s REE T ®

Kg
S
Alpha ki
K
e
Wach ¥a
Gain
Scheduled
Coeffizints
AntiWindup
Go— 2in
Az_m
(8 _» Fin
Az d Demand
(&N
a_m
Ready 100% |odeas v

¢ The model implements the homing guidance system as two subsystems: the
Guidance subsystem and the Seeker/Tracker subsystem.

= The Guidance subsystem uses a Stateflow statechart to control the tracker
directly by sending demands to the seeker gimbals.

-} Stateflow {chart) aeroblk_guidance/Guidance/Guidance Processor (Updated @100H - Ellﬁl
File Edit Simulation Wiew Tools Add Help

et t=lgsdEr @ = BRAO W

Tarnzet_Search
en: Mode=1, Sgma_d=dyincr=100;Acquire_time=t]
olu: Sigma_cke=Sigma_d+0.01%incr;

ey

. E [tAcquire_timea=7] [Timeacut;
o

enter|Guidance. Tanget_Saanch)

S N
“eassssmsnssssmssssssmsnnnnnnnnnnnnnnnnnnnt

‘Heady

1-13

1 Intfroducing the Aerospace Blockset

1-14

= The Seeker/Tracker subsystem consists of Simulink blocks that control the
seeker gimbals to keep the seeker dish aligned with the target and provide
the guidance law with an estimate of the sight line rate.

E!aerDblk_guidance,a"Seeker,a"Tracker 1o ;lﬂlﬂ

File Edit View Simulation Format Toaols Help

D\D’“Hé\éﬂﬁ\@fﬂb = |Momal '”@@mlﬁ[@?®

3 : | Look #ngle

Look Angle
#equire Flag - Acquire

Lok £ngle

Gimbal Angle [Gimbal Angle

G w3 Target
a Requisition v
Sightline Rate
1) sigma_d Siamadot Closing Velocity |—{_Z)
Sigma_d
Ve
Tracker and Sightline Rate e y—mr

Estimator Range Range

Rm

Range and
Closing Velosity Estimates

Ready [100% |odeds 7

Running the Demo

Running a demo lets you observe the model simulation in real time. After you
run the demo, you can examine the resulting data in plots, graphs, and other
visualization tools. To run the missile guidance model, follow these steps:

1 Open the aeroblk guidance demo.

2 From the Simulation menu, select Start. In Microsoft Windows, you can
also click the Start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes
approximately 3 seconds. Once the interception has occurred, four scope
figures open to display the following data:

a Three-dimensional animation of the missile and target interception
course:

Running a Demo Model

-} Figure No. 1: Animation Figure

b Plots that measure flight parameters over time, including Mach number,
fin demand, acceleration, and degree of incidence:

1-15

1 Intfroducing the Aerospace Blockset

=10l x|

<} Figure No. 2

File:

“Web Desktop Window Help

View Insert Tools

Edit

COEOC@MN N Hk[o0DO

4

DS k2L o

20

&
0]

> L=l

[6] uolelsEooy [BLUOK

Time [Sec]

Time [Sec]

T4 DR

= =)
"5 o

[Bap] spuewsg w4

IBqUIn YoEpy

Time [Sec]

Time [Sec]

Plot that measures gimbal versus true look angles:

C

1-16

Running a Demo Model

~i0i

File Edit Wiew Insert Tools Web Desktop Window Help

s NN A =] =l uleln

30 . . ; : : .
H H H — = True Look Angle
= Gimbal Angle
=, * Mode Changes
@ : : :
[=]
=
<
=
[=}
L=
—
om -
m
O
£
(4]
a0 H H i i i

0] 0.5 1 1.5 2 2.5 2

Tivrn [Caal

d Plot that measures missile and target trajectories:

~i0i

File Edit Wiew Insert Tools Web Desktop Window Help

s NN A =] =l uleln

Missile and Target Trajectories

-2600

-2600

-2400

-2300

Z [m]

-2200

-2100

-2000

0 1000 2000 2000 4000 5000
*[m]

Modifying the Model

You can adjust model settings and examine the effects on simulation
performance. Here are two modifications that you can try. The first
modification adjusts the dynamic pressure for the simulation. The second
modification changes the camera point of view for the interception animation.

1-17

1 Intfroducing the Aerospace Blockset

Adjusting the Thrust

Like any Simulink model, you can adjust aerospace model parameters from the
MATLAB workspace. To demonstrate this functionality, you will change the
Thrust variable in the model and evaluate the results in the simulation. Follow
these steps:

1 Open the aeroblk guidance model in Simulink.

2 In the MATLAB desktop, find the Thrust variable in the Workspace panel.

l-1a(x]
File Edit Wiew Graphics Web Desktop Window Help
J ': Eﬁ @ | ’E | '|Stac:k:|Eiase 'l
IVaIue |Class |
287 26 double |
0.040877 double
288.16 double
<Txf struct= struct
oo~ iowe
<4758 double= double
0 double
[00.0625130.139... double
=d7xT double= double
0.000215 double =l
4

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the
aeroblk guidance model uses to populate parameter and variable values.
By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click on
the Thrust variable and select Edit Value. Change the value to 5000.

Before you run the demo again, note the Miss Distance display in the
aeroblk_guidance window:

1-18

Running a Demo Model

[TJaerablk_guidance =[]

File Edit Wiew Simulation Format Tools Help

DB &| LB || r = nm el REE T ®

Demanded look angle during target search fozt
Sigma_d
Sigmadot Sigma_d HeZe 7,

o Range
[+ b vt ped|—ered Atitude »
- Look Angle

Pmeet 'y 30aF Animatian
osition Missile —> Target Rm [+ Rm Miss
Separation a

SeekerTracker

Guidance pirtrame

Autopilot
Miss
Distance
Missile Body Angular Rate .
Wi A Display

Wiissik Fosition

Miss Distance

Double click here to go to a
demo an timming and linearizing
airframe modsls

Ready [100% Jodeds 4

Start the demo, and after it finishes, note the miss distance display again. The
miss distance should become greater than the original distance. You can
experiment with different values in the Thrust variable and assess the effects
on missile accuracy.

Changing the Animation Point of View

By default, the aeroblk_guidance model animation view is Fly Alongside,
which means the view tracks with the missile’s flight path. You can easily
change the animation point of view by adjusting a parameter of the 3DoF
Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation
block. The Block Parameters dialog box appears.

1-19

1 Intfroducing the Aerospace Blockset

Block Parameters: 3DoF Animation |

r— 3DoF_Animation [mazk)] (link]

Create a 3-D animated view of a three-degrees-of-freedom craft and itz
target, where # and £ target position [T argetPog], % and £ craft position
[#eZe], and craft attitude are inputs.

Dizplay parameters are in the same units of length as the input parameters.

—P |
F

Ames limits [xmin smasx ymin ymax zmin zmas]:
|[D 5000 -2000 2000 -5050 -3050]

Time interval between updates:
Jooz

Size of craft displayed:
|18

Enter view: |

Enter view

Position of camera [=c ye zc]:
J1200 200 50]

Wiew angle:
20

[¥ Enable animation

QK I Cancel | Help | Apply

2 Change the view to Cockpit.

3 Click the OK button.

Run the demo again, and watch the animation. Instead of moving alongside the
missile’s flight path, the animation point of view lies in the cockpit. Upon target
interception, the screen fills with blue, the target’s color:

1-20

Running a Demo Model

=101 x|

=} Figure 1: Animation Figure
File Edit View Insert Tools ‘“Web Deskbop Window Help Camera (Orbit, 23

Ded& K RAG® LI 0B 50

You can experiment with different views to watch the animation from different
perspectives.

1-21

1 Intfroducing the Aerospace Blockset

1-22

Getting Started with the
Aerospace Blockset

Constructing a simple model with the Aerospace Blockset is easy to learn if you already know how to
make Simulink models. If you are not already familiar with Simulink, please see the Simulink
documentation.

Introducing the Aerospace Blockset Libraries Overview of the Aerospace Blockset libraries
(p. 1-2)

Creating Aerospace Models (p. 1-5) Summary of the most important steps for building
models with the Aerospace Blockset

Building a Simple Actuator System (p. 1-6) A tutorial to model and simulate a simple actuator
system

1 Getting Started with the Aerospace Blockset

Introducing the Aerospace Blockset Libraries

The Aerospace Blockset is organized into hierarchical libraries of closely
related blocks. The following sections summarize the blocks in each library.
You can view the general Aerospace Blockset reference in Chapter 3, “Block
Reference.”

Note For more information on viewing the Aerospace Blockset, see Chapter
1, “Introducing the Aerospace Blockset.”

Actuators Library

The Actuators library provides blocks for representing linear and nonlinear
actuators with saturation and rate limits.

Aerodynamics Library
The Aerodynamics library provides the Aerodynamic Forces and Moments

block using the aerodynamic coefficients, dynamic pressure, center of gravity
and center of pressure.

Animation Library

The Animation library provides the 3DoF Animation block and the 6DoF
Animation block. Using the animation blocks, you can visualize flight paths
and trajectories.

Environment Library

The Environment library provides blocks that simulate various aspects of an
aircraft environment, such as atmosphere conditions, gravity, magnetic fields,
and wind. The Environment library contains the Atmosphere, Gravity, and
Wind sublibraries.

Atmosphere Sublibrary

The Atmosphere sublibrary provides general atmospheric models, such as ISA
and COESA, and other blocks, including nonstandard day simulations, lapse
rate atmosphere, and pressure altitude.

Introducing the Aerospace Blockset Libraries

Gravity Sublibrary

The Gravity sublibrary provides blocks that calculate the gravity and magnetic
fields for any point on the Earth.

Wind Sublibrary

The Wind sublibrary provides blocks for wind-related simulations, including
turbulence, gust, shear, and horizontal wind.

Equations of Motion Library

The Equations of Motion library provides blocks for implementing the
equations of motion to determine body position, velocity, attitude, and related
values.The Equations of Motion library contains the 3DoF and 6DoF
sublibraries.

3DoF Sublibrary

The 3DoF sublibrary provides blocks for implementing
three-degrees-of-freedom equations of motion in your simulations, including
custom variable mass models.

6DoF Sublibrary

The 6DoF sublibrary provides blocks for implementing six-degrees-of-freedom
equations of motion in your simulations using Euler angles and quaternion
representations.

Flight Parameters Library

The Flight Parameters library provides blocks for various parameters,
including ideal airspeed correction, mach number, and dynamic pressure. The
Flight Parameters library contains the Control and Guidance sublibraries.

GNC Library

The GNC library provides blocks for creating control and guidance systems,
including various controller models.

Control Sublibrary

The Control sublibrary provides blocks for simulating various control types,
such as one-dimensional, two-dimensional, and three-dimensional models.

1 Getting Started with the Aerospace Blockset

14

Guidance Sublibrary

The Guidance sublibrary provides the Calculate Range block, which computes
the range between two vehicles.

Mass Properties Library

The Mass Properties library provides blocks for simulating the center of
gravity and inertia tensors.

Propulsion Library

The Propulsion library provides the Turbofan Engine System block, which
simulates an engine system and controller.

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models.

The Utilities library contains the Axes Transformations, Math Operations, and
Unit Conversions sublibraries.

Axes Transformations Sublibrary

The Axes Transformation sublibrary provides blocks for transforming axes of
coordinate systems to different types, such as Euler angles to quaternions and
vice versa.

Math Operations Sublibrary

The Math Operations sublibrary provides blocks for common mathematical
and matrix operations, including sine and cosine generation and various 3-by-3
matrix operations.

Unit Conversions Sublibrary

The Unit Conversions sublibrary provides blocks for converting common
measurement units from one system to another, such as converting
acceleration from feet per second to meter per second and vice versa.

Creating Aerospace Models

Creating Aerospace Models

Regardless of its complexity, you use the same procedure for creating an
aerospace model as you would for creating any other Simulink model. Here are
the basic steps:

1 Select and position the blocks. You must first select the blocks that you need
to build your model, and then position the blocks in the model window. For
the majority of Simulink models, you will select one block from each of the
following categories:

a Source blocks generate or import signals into the model, such as a sine
wave, a clock, or limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs
an action in the simulation. Usually, a simulation block represents a part
of the model and design functionality to be simulated, such as an actuator
block, a mathematical operation, a block from the Aerospace Blockset,
and so on.

¢ Signal Routing blocks route signals from one point in a model to another.
If you have two or more signals in your block, you will likely use a signal
routing block in your models, including Mux blocks.

d Sink blocks display or write model output. To see the results of the
simulation, you must use a sink block.

2 Configure the blocks. Most blocks feature configuration options that let you
customize block functionality to specific simulation parameters. For
example, the ISA Atmosphere Model block provides configuration options
for setting the height of the troposphere, tropopause, and air density at sea
level.

3 Connect the blocks. To create signal pathways between blocks, you connect
the blocks to each other. You can do this manually by clicking and dragging
or you can connect blocks automatically. For more information on connecting
blocks, see the Simulink documentation.

4 Encapsulate subsystems. Systems made with the Aerospace Blockset can
function as subsystems of larger, more complex models, like subsystems in
normal Simulink models. For more information on subsystems, see the
Simulink documentation.

1-5

1 Getting Started with the Aerospace Blockset

Building a Simple Actuator System

In this tutorial, you drag, drop, and configure a few basic blocks to drive,
simulate, and measure an actuator. The tutorial guides you through these
aspects of model-building:

¢ “Building the Model” on page 1-6

¢ “Running the Simulation” on page 1-15

At the end of the tutorial, you will have constructed a simple actuator model
that measures the actuator’s position in relation to a sine wave.

Building the Model

Simulink is a software environment for modeling, simulating, and analyzing
dynamic systems. Try building a simple model that drives an actuator with a
sine wave and displays the actuator’s position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, enter aeroblktutorial at the MATLAB command line.

=] aeroblktutorial * =] 3

File Edit WYiew Simulation Format Tools Help

% % l L [t Azetral |§|
Scope

Sine Wave Second Order Linear Actuator

¥

¥

Ready [1o02 |odets v

The following sections explain how to build a model on Windows and UNIX
platforms.

® “Creating a Model on Windows Platforms” on page 1-7
® “Creating a Model on UNIX Platforms” on page 1-11

1-6

Building a Simple Actuator System

Creating a Model on Windows Platforms

1 Start Simulink.

Click the ® button in the MATLAB toolbar or enter simulink at the
MATLAB command line. The Simulink Library Browser appears.

[simulink Library Browser

File Edit WYiew Help

=101 x|

01 = 4 Find ||

Continuous: simulink/Continuous

= Tl simulink:

| v

..... | Continuous

----- 2| Discontinuities

----- y Discrete

----- 2 Look-Up Tables
----- 2] Math Operations

----- 2] Model Werification
..... 2| Model-wide Utilidies
----- 2] Ports & Subsystems

..... 2 signal sttributes
..... 2] signal Routing

CLt BT LE

----- y Sources

-----] User-Defined Functions
- W Aerospace Blockset Mizc
- il COM Reference Blockset
- W Communications Elacksst
----- W Control System Toolbox

i s

- W D5P Blockset _|LI
< | v

Ready

Discontinuities
Discrete

Look-Up Tables
Math Dperations
Model Verification
Modelwide Utilities
Ports & Subsystems

Signal Attributes

-

=]
Y

2 Open a new model.

Select New -> Model from the File menu in the Library Browser. A new
model window appears on your screen.

1-7

1 Getting Started with the Aerospace Blockset

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the 7] symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

¢ Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.
7 Resize the Mux block in the model.
a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

Building a Simple Actuator System

8 Connect the blocks.

Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

b

Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

Click OK.

1 Getting Started with the Aerospace Blockset

Block Parameters: Sine Wave x|

—Sine Wave

Output a sine wave:

0] = Amp*Sin[2 pi*Freq t+Phase] + Bias

Sine type determines the computational technique used. The parameters in the two
types are related through:

Samples per period = 2°pi / [Frequency * 5 ample time)
Mumber of offset zamples = Phase * Samples per period / [27pi]

Uze the zample-based sine type if numernical problems due to running for large times
[e.g. overflow in absolute time] ocour.

=) |
F

Sine type:

Time [t]: I Use simulation time LI
Amplitude:

Jh

Bias:

Jo

Frequency [rad/zec]:
Jio

Fhase [rad):

Jo

Sample time:

Jo

V' Interpret vector parameters as 1-D

Ok I Lancel | Help |

¢ Double-click the Second Order Linear Actuator block.

In this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

1-10

Building a Simple Actuator System

Block Parameters: Second Order Linear Ackw |

— Second Order Linear Actuator [mask)] [link]

Implement a second-order actuator model

P
Matural frequency:
150

[ramping ratio:
jo7

Initial position:
jo

QK I Cancel | Help | Apply

Creating a Model on UNIX Platforms

For the “Creating a Model on UNIX Platforms” section, the screenshots were
taken from an X Windows client in Microsoft Windows.

1 Start Simulink.

Enter simulink at the MATLAB command line. The Simulink Library

window appears.

fsLibrary: simulink - Ellll
File Edit View

\ii
/?'f‘\

Sources Sinks Cumlnuuus D\screte Dlscuntmu\tles Signal S\ nal
Rautiniy Attributes

B

Math Logic and Bit Lookup User—Defined Model Ports & Mocel -\icke
Operations Operations Tahles Functions “erification Subsystems Hilities

Blocksets & Simulink Block Library 6.0 Damios
Toolboxces Copyright () 1830-2003 The Matknforks, Inc

Help

2 Open a new model.

Select New -> Model from the File menu in the Simulink Library window.

A new model window appears on your screen.

3 Add a Sine Wave block to the model.

1-11

1 Getting Started with the Aerospace Blockset

1-12

a Double-click Sources in the Simulink Library window to view the blocks
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

Add a Second Order Linear Actuator block to the model.

a Double-click Aerospace Blockset in the Simulink Library browser. This
opens the Aerospace Blockset block libraries.

b In the Aerospace Blockset block libraries, click Actuators to view the
blocks in the Actuator library.

¢ Drag the Second Order Linear Actuator block into the model window.

Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model
window.

Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window.

Resize the Mux block in the model.
a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

Building a Simple Actuator System

¢ Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

In this example, configure the block to generate a 10 rad/sec sine wave by
entering 10 for the Frequency parameter. The sinusoid has the default
amplitude of 1 and phase of 0 specified by the Amplitude and Phase
offset parameters.

b Click OK.

1-13

1 Getting Started with the Aerospace Blockset

¢ Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

1-14

Building a Simple Actuator System

..[+Block Parameters: Second x|
Second Order Linear Actuator (mask) (link)
lrlmplement a second-order actuator model —‘

Farameters

Matural frequency:

150 |
Damping ratio:

07
Initial position:
[T

(019 | Cancel Help

Running the Simulation

You can now run the simulation block diagram that you built to see how the
system behaves in time:

1 Double-click the Scope block if the Scope window is not already open on your
screen. The Scope window appears.

2 Select Start from the Simulation menu in the block diagram window. The
signal containing the 10 rad/sec sinusoid and the signal containing the
actuator position are plotted on the scope.

3 Adjust the Scope block’s display. While the simulation is running, right-click
the y-axis of the scope and select Autoscale. The vertical range of the scope
is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open
its parameter dialog box. This will cause the simulation to pause.

b You can then change the frequency of the sinusoid. Try entering 1 or
20 in the Frequency field. Close the Sine Wave dialog box to enter your
change and allow the simulation to continue. You can then observe the
changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

1-15

1 Getting Started with the Aerospace Blockset

1-16

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s
dimensions or sample rate. There are some parameters, however, like the Sine
Wave Frequency parameter, that you can tune without terminating the
simulation.

Note Opening a dialog box for a source block causes the simulation to pause.
While the simulation is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow the simulation
to continue.

Running a Simulation from an M-File

You can also modify and run a Simulink simulation from within a MATLAB
M-file. By doing this, you can automate the variation of model parameters to
explore a large number of simulation conditions rapidly and efficiently. For
information on how to do this, see “Running a Simulation Programmatically”
in the Simulink documentation.

Case Studies

Missile Guidance System (p. 2-2)

NASA HL-20 Lifting Body Airframe
(p. 2-22)

Ideal Airspeed Correction (p. 2-36)

Designing and simulating a three-degrees-of-freedom missile
guidance system using Simulink and the Aerospace Blockset.

Modeling the airframe of a NASA HL-20 lifting body, a
low-cost complement to the Space Shuttle orbiter, using
Simulink and the Aerospace Blockset.

Calculating indicated and true airspeed using Simulink and
the Aerospace Blockset.

2 Case Studies

2-2

Missile Guidance System

This section explains how to design and simulate a three-degrees-of-freedom
missile guidance system using Simulink and the Aerospace Blockset:

® “Missile Guidance System Model” on page 2-2 shows how to open the model
used in this case study.

® “Modeling Airframe Dynamics” on page 2-3 describes how the atmospheric
equations and the equations of motion in the missile airframe are
implemented.

® “Modeling a Classical Three-Loop Autopilot” on page 2-10 describes how to
design the missile autopilot to control the acceleration normal to the missile
body.

® “Modeling the Homing Guidance Loop” on page 2-12 describes how to design
the homing guidance loop to track the target and generate the demands that
are passed to the autopilot.

¢ “Simulating the Missile Guidance System” on page 2-18 describes how to
simulate the model and evaluate system performance.

¢ “Extending the Model” on page 2-20 examines a full six-degrees-of-freedom
equations of motion representation.

® “References” on page 2-20 provides a selected bibliography.

Missile Guidance System Model

To view the missile guidance system model, enter the following at the
MATLAB command line.

aeroblk_guidance
The missile airframe and autopilot are contained in the Airframe & Autopilot

subsystem. The Seeker/Tracker and Guidance subsystems model the homing
guidance loop.

Missile Guidance System

E!aernhlk_guidante

File Edit ‘“iew Simulation Format Tools Help

—lojx|

Dl@uélé@ElDQl} llemaI '|@@|ﬂ?®

C

Position

Target i

pa

Missile = Targat
Separation

Sigmadot
| Fange
e
Look Angle
Rm

q

Demanded look angle during target search
sigma_d
- Sigmadot sigma_d

et

SeckenTracker

fo_d [R

Fuidance

Miss Distance

ez g *
4 Atitude »
30oF Animation
q
Airame
&
Autopilot

Missile Body Angular Rate

Missile Aftitude

Ready

hiissike

Position

Double click here to go to a
demo on timming and line arizing
airframe models

100%

|odeas

Modeling Airframe Dynamics

The model of the missile airframe in this demo uses advanced control methods
applied to missile autopilot design [1], [2], [3]. The model represents a

tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes
ranging between 3050 meters (10000 feet) and 18290 meters (60000 feet), and
with typical angles of attack in the range of +20 degrees.

2-3

2 Case Studies

'\ Body Rate
x,U q

Center of
Gravity i
Incidence =

Fin Deflection =1

ZW
Normal Acceleration =a,

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on the
missile body are generated from coefficients that are nonlinear functions of
both incidence and Mach number. You can model these dynamics easily in the
Simulink environment using the Aerospace Blockset.

The model of the missile airframe consists of two main components:
® “ISA Atmosphere Model Block” on page 2-5 calculates the change in
atmospheric conditions with changing altitude.

® “Aerodynamics & Equations of Motion Subsystem” on page 2-8 calculates the
magnitude of the forces and moments acting on the missile body and
integrates the equations of motion.

2-4

Missile Guidance System

To view the missile airframe model, enter the following in the MATLAB
Command Window:

aeroblk_guidance_airframe

E!aerublkiguidanceiairframe ;IEIEI

File Edit Wiew Simulation Format Toaols Help

D|D’“E§|$E|QQ|> llNDlmaI '|f

Model used to trim and linearize airframe

= irmis) -
h h_ini
Elerrm =t e oo |
154 Height
@ iy

Atmosphere Model

o]
Atitude

q 1

¥

Thrust 2 pe ,
A
e
Fin Detiection v

Aerodynamics &
Equations of Mation

‘ Double-click here to generate linearizations |

Ready [100% |odeas v

ISA Atmosphere Model Block

The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block consists of two sets of equations. One
set of equations models is used for the troposphere region, and the other set of
equations models is used for the lower stratosphere region. The troposphere
region lies between sea level and 11000 meters (36089 feet). The ISA model
assumes a linear temperature drop with increasing altitude in the troposphere
region. The lower stratosphere region ranges between 11000 meters (36089
feet) and 20000 meters (65617 feet). The ISA models the stratosphere by
assuming that the temperature remains constant in the lower stratosphere

2-5

2 Case Studies

2-6

region. The figure below displays how the speed of sound and the air density

vary with altitude.

<) Figure No. 1

File Edit WYiew Insert Tools Window Help

=10l x|

Deda "A A/ | @20

Speed of Sound

280 1 1 1 1 1 1
4] 2 4 4] 8 10 12 14 168 18
Altitude [Km)
Air Density
1.5

4] 2 4 4] 8 10 12
Altitude [Km)

20

The following equations define the troposphere:

T =T,-Lh
_ T\ir '
b n(D)
T £
P—PO(TO)LR

Missile Guidance System

The following equations define the lower stratosphere:

T =216.7°K
g
T\i% RiT(nooo—h)
oo (DR
g g
£ 1 £.(11000-h)
P=P . (1) LR eRT
) TO
a = JYRT
The symbols are defined as follows.
Ty Absolute temperature at mean sea level in degrees Kelvin
Po Air density at mean sea level in kg/m?
P, Static pressure at mean sea level in N/m?
h Altitude in m
T Absolute temperature at altitude 4 in degrees Kelvin
p Air density at altitude % in kg/m?®
P Static pressure at altitude A in N/m?
a Speed of sound at altitude 4 in m/s®
L Lapse rate in degrees Kelvin/m
R Characteristic gas constant J/kg-degrees Kelvin
Y Specific heat ratio
g Acceleration due to gravity in m/s?

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented in the model.

2 Case Studies

Aerodynamics & Equations of Motion Subsystem

The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The
aerodynamic coefficients are stored in data sets, and, during the simulation,
the value at the current operating condition is determined by interpolation
using the Interpolation (n-D) using PreLook-Up block.

E!aerohlk_guidance,.-"Airframe & Autopilot/Aerodynamics & Equa - |EI|1|
File Edit WYiew Simulation Format Tools Help
DSE&| BR[| r = Nom ey pEE T
(7 -
™
Alpha ¥ U
Incidence
& Airspeed
Lq Mach
Mooh
v Thrust{ 3)
8 fmet) (2)
Fe o F,) Aftitude
- Alpha @, (mdis) » =)
q
a Fz I {F, (M} qdot
%, 7, (T
(1 —————MmRho XeZe
Rho Uw (=)
(&0 »|Fin M o1 Il (1d-rii)
Fin A A Iy (5)
- B Az
Aeradynamics 20oF (Body Axes)
Ready [1o02 [[|odets v

These are the three-degrees-of-freedom body axis equations of motion, which
are defined in the Equations of Motion (Body Axes) block:

U= (T+F,)/m-qW-gsinb
W =F,/m+qU+gcosH

g = M/Iyy

0 =gq

2-8

Missile Guidance System

These are the aerodynamic forces and moments equations, which are defined
in the Aerodynamics subsystem:

Ny

= quefo(Mach,a)
L = quefCZ(Mach,oc, n)

M = quefdre}‘CM(MaCh’ a, n’ Q)
_ 1 .2
= 2pV
These are the stability axes variables, which are calculated in the Incidence &
Airspeed block:
V= JU+ W

o

atan(W/U)

The symbols are defined as follows.

Attitude in radians

Body rotation rate in rad/s

Missile mass in kg

Acceleration due to gravity in m/s®
Moment of inertia about the y axis in kg-m?
Acceleration in the Z body axis in m/s?
Change in body rotation rate in rad/s?
Thrust in the X body axis in N

Air density in kg/m3

Reference area in m?

Coefficient of aerodynamic force in the X axis
Coefficient of aerodynamic force in the Z axis

Coefficient of aerodynamic moment about the Y axis

2 Case Studies

2-10

d, of Reference length in meters

n Fin angle in radians

Fy Aerodynamic force in the X body axis in N
F, Aerodynamic force in the Z body axis in N
M Aerodynamic moment along the Y body axis
q Dynamic pressure in Pa

\% Airspeed in m/s

o Incidence in radians

U Velocity in the X body axis in m/s

w Velocity in the Z body axis in m/s

Modeling a Classical Three-Loop Autopilot

The missile autopilot controls the acceleration normal to the missile body. In
this case study, the autopilot structure is a three-loop design using
measurements from an accelerometer located ahead of the missile’s center of
gravity and from a rate gyro to provide additional damping. The following
figure shows the classical configuration of an autopilot. The controller gains
are scheduled on incidence and Mach number and tuned for robust
performance at an altitude of 3050 meters (10000 feet):

Actuators | Airframe

Rate Body Rate g

Gyro

g \ dg/dt
_‘ Normal Acceleration

Accelerator (o (G a

Missile Guidance System

Designing an autopilot entails the following:

¢ “Trimming and Linearizing an Airframe Model” on page 2-11 explains how
to model the airframe pitch dynamics for a number of trimmed flight
conditions.

® “Autopilot Design” on page 2-12 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model

Designing the autopilot using classical design techniques requires linear
models of the airframe pitch dynamics for a number of trimmed flight
conditions. MATLAB can determine the trim conditions and derive linear
state-space models directly from the nonlinear Simulink model. This saves
time and helps to validate the model. The functions provided by the Control
System Toolbox allow you to visualize the behavior of the airframe in terms of
open-loop frequency (or time) responses.

The airframe trim demo shows how to trim and linearize an airframe model.
To run this demo, enter the following in the MATLAB Command Window:

aeroblk_lin_aero

The output from this demo is a Bode diagram in the Control System Toolbox
viewer:

) LTI Viewer =[]
File Edit window Help
loa|l®se
Bode Diagram
From: Elevator
@ =
y T
L O A II I Ere ST A
2 s
a0
350

Magnitude (dB) ; Phaze (deg)

o Lia L
= 80 e B R SR T B NI U Ll
i

10! 10 10 16 10
Frequency (rad/sec)

Change the line styles shown i this LTI Viewer

2-11

2 Case Studies

2-12

Autopilot Design

Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Typically, autopilot designs are carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. Implementing the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables
and incorporating an antiwindup gain to prevent integrator windup when the
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear
Simulink model is the best way to demonstrate satisfactory performance in the
presence of nonlinearities, such as actuator fin and rate limits and dynamically
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design within Simulink:

E!aerDblk_guidance,s"Airframe & Autopilot /Autopilot = il
File Edit View Simulation Format Tools Help

DEESES BB D2y = |Nom s REE > ®

i

Alpha Kl

Gain
Scheduled

o
Az_m
5 - Fin
ard Demand
k.
—
(N
am

Ready |100% lodeds v

Modeling the Homing Guidance Loop

The complete homing guidance loop consists of these two subsystems:

¢ The “Guidance Subsystem” on page 2-13 generates the normal acceleration
demands that are passed to the autopilot.

¢ The “Seeker/Tracker Subsystem” on page 2-16 returns measurements of the
relative motion between the missile and the target.

Missile Guidance System

The autopilot is now part of an inner loop within the overall homing guidance
system. Consult Reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance loop
performance:

=] aeroblk_guidance =101

File Edit Wiew Simulation Format Toals Help

D|@H§|%E|DQ|» lINDlmaI '|@@|Hﬁ®

Demanded look angle during taret search Lxrz‘
sigma_d
- Xe Z&

Sigmadot | Sigmadot Sigma_d ¥aZa i,
| Fange
s [y Y o d | —p{red Aitude »
- Lock fngle
Target & 3DoF Animation
Position Missile - Target [Miss a

q

Separation

SeekewTracker Guidance Airframa
2

Autapilot

Miss Distance

Missile Body Angular Rate

Missile Attitude

hiissile Position

Double click here to go to a
demo on timming and linearizing
airframe models

Ready 100% |nde4s 4

Guidance Subsystem

Initially, the Guidance subsystem searches to locate the target’s position and
then generates demands during closed-loop tracking. A Stateflow model
controls the transfer between the different modes of these operations.
Stateflow is the ideal tool for rapidly defining all the operational modes, both
during normal operation and during unusual situations:

2-13

2 Case Studies

2-14

E!aernhIk_guidance,;"EuidantE o i m| ﬂ
File Edit View Simulation Format Tools Help

D‘ﬁné‘%ﬂ‘9Q|} = |Nomal '”@@mlﬁlﬁﬁ}®

> hiss
Il
Sigma_d -m
- hiode

Hald Guidanee Pocessor
{Updated @&100Hz)

Ve x 36 13
Sigmadot L

Limit
Mormal Acceleration
Demand

Froportional Lt
Navwigation
Gain

Ready 100% |odeds v

Guidance Processor Statechart. Mode switching is triggered by events generated in
Simulink or in the Stateflow chart. The variable Mode is passed out to Simulink
and is used to control the Simulink model’s behavior and to determine the
response of the Simulink model. For example, the Guidance Processor state
chart, which is part of the Guidance subsystem, shows how the system reacts
in response to either losing the target lock or failing to acquire the target’s
position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed loop guidance begins:

Mi

ssile Guidance System

<) Stateflow {chart) aeroblk_guidance/Guidance/Guidance Processor (Updated E - E||£|

File Edit Simulation Yiew Tools Add Help

et saa ser|assE|r i« BRAO &

Tanzet_Saarch
an: Mode=1 ; Sigma_orincr=100;Acquire_time=t
oy Sigma_ckeSigma_ck.01tiner;

‘Heady

Proportional Navigation Guidance Measurements. Once the seeker has acquired the
target, a Proportional Navigation Guidance (PNG) law guides the missile until
impact. This form of guidance law is the most basic, used in guided missiles
since the 1950s, and can be applied to radar-, infrared-, or television-guided
missiles. The navigation law requires measurements of the closing velocity
between the missile and target, which for a radar-guided missile can be
obtained with a Doppler tracking device, and an estimate for the rate of change

of the inertial sight line angle:
Target
® g

P S Seeker Dish

Missile @<=

»x, Inertial Reference

7

Proportional Navigation Guidance Measurements

2-15

2 Case Studies

The diagram symbols are defined as follows.

A Navigation gain (> 2)
V. Closing velocity

O Body attitude

O Sight line rate

Og Gimbal angle

oL Look angle

a4 Dish angle

a, dem = MV0s Demanded normal acceleration

Seeker/Tracker Subsystem

The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target and provides the guidance law with an estimate of
the sight line rate:

E!aerDblk_guidance,a"Seeker,a"Tracker 1o - EI|1|
File Edit View Simulation Format Toaols Help

D\D’“Hé\éﬂﬁ\@fﬂb = |Momal '”@@mlﬁ[@?®

€D . | Look #ngle
Look Angle
#equire Flag - Acquire
Lok £ngle

Gimbal Angle [Gimbal Angle

G w3 Target
a Requisition v
Sightline Rate
1) sigma_d Siamadot Closing Velocity |—{_Z)
Sigma_d
Ve
Tracker and Sightline Rate e y—mr
Estimator Range Range
Rm

Range and
Closing Velosity Estimates

Ready [100% |odeds 7

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate Estimator, the
most elaborate subsystem of the Seeker/Tracker subsystem because of its
complex error modeling, is shown below.

2-16

Missile Guidance System

The subsystem contains a number of feedback loops, estimated parameters,
and parasitic effects for the homing guidance. The tracker loop time constant
tors is set to 0.05 second, a compromise between maximizing speed of
response and keeping the noise transmission within acceptable levels. The
stabilization loop compensates for body rotation rates, and the gain Ks, which
is the loop crossover frequency, is set as high as possible subject to the
limitations of the stabilizing rate gyro’s bandwidth. The sight line rate
estimate is a filtered value of the sum of the rate of change of the dish

angle measured by the stabilizing rate gyro and an estimated value for the rate
of change of the angular tracking error (e) measured by the receiver. In this
demo, the bandwidth of the estimator filter is set to half that of the bandwidth
of the autopilot:

E!aerohlk_guidan|:e,«"Seeker,‘-"Tracker‘.-"'lracker and Sightline Rate Estimator * - EI|£|
File Edit Wiew Simulation Format Toals Help
DEE&| =R » = |hom mE | REE T ®
Angular Noise
ot 71
Dish Enor Mode Guided Flight
Loak Angle
Sige_d Dish Ermor] ich emor
Sightline Rate
Sightline
o
Girrtal ¥ Fate
Gimbal Tracking Estimator Filter
Angle ‘Switeh 1 Glised Gain
Gimbal Loop Troking
Ks
— 1
L= |
Stabilzation
Gimbal
Gain e %
* 2
& > o
a 2400 Thgymssngym i
Stabilizing Fate Gym
Ready [100% lodeds Y

Radome Aberration. Radome aberration is also modeled by the Tracker and
Sightline Rate Estimator subsystem.

Radome aberration is a parasitic feedback effect commonly modeled in
radar-guided missile designs. It occurs because the shape of the protective
covering over the seeker distorts the returning signal, and it gives a false
reading of the look angle to the target. The amount of distortion is, in general,

2-17

2 Case Studies

a nonlinear function of the current gimbal angle. But a commonly used
approximation is to assume a linear relationship between the gimbal angle and
the magnitude of the distortion. Often, other parasitic effects, such as
sensitivity to normal acceleration in the rate gyros, are also modeled to test the
robustness of the target tracker and estimator filters:

Radome Error 6,=K,0, P, Appeertilangel

e

Gimbal Angle o,

Antenna \ Seeker Axis

Radome

Simulating the Missile Guidance System

Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the figure below, can be used to
determine if the missile can withstand the flight demands and complete the
mission to impact:

2-18

Missile Guidance System

<) Figure No. 2

Mach Number

Mermal Acceleration [g]
<

£
=)

I
L=l

=]
L=l

I
=)

=10l x|

File Edit WYiew Insert Tools Window Help
20 :
T F 15 E
_____ — - Prgemand] = T "-E"_
h ; T = '
L e B e -
= '
= !
-] EEEEEEI TEEEEE dae-- 4--4
£ 1 1
B 1
4] 1 2 3
Time [Sec] Time [Sec]
T 10
: =
' L
: =
' 3]
H =
' =
' i
1 =
R o
!]
=
i
1 2 3
Time [Sec] Time [Sec]

The simulation results show that target acquisition occurs 0.69 second after
search initiation, with closed loop guidance starting after 0.89 second. Impact
with the target occurs at 3.46 seconds, with the range to target at the point of

closest approach calculated to be 0.26 meter:

<) Figure No. 3
File Edit WYiew Insert Tools Window Help

=10l x|

Insda/ "a /| ®p0

30 T T T T T T
: — True Look Angle
20 Girmbal Angle
= # Mode Changes [
= T T T
@ 1ot 3oees
= i
= 1
= :
5 0 1
L= '
— i
il 1
= 1 :
O '
£ :
S 20 ;
a0 i i i i i i
05 1 1.5 2 2.5 3
Tirme [Secl

2-19

2 Case Studies

Extending the Model

Modeling the airframe and guidance loop in a single plane is only the start of
the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion for
a rigid body.

Six-degrees-of-freedom can be represented using quaternion or Euler Angles.
The quaternion implementation uses a quaternion to represent the angular
orientation of the body in space. The quaternion is appropriate when the
standard Euler angle definitions become singular as the pitch attitude tends to
+90 degrees. The Euler angle implementation uses the standard Euler angle
equations of motion. Euler angles are appropriate when obtaining trim
conditions and modeling linear airframes. This model contains one of the
six-degrees-of-freedom equations of motion blocks:

=] aeroblk_six_dof — O] x|

File Edit ‘iew Simulation Formak Tools Help

Six Degrees of Freedom Motion Simulation

Ve) T T el A L |:|

Foroes X ¥ Z (M) e Position in Inerial Axes >

Euler (mc) Lt :> e Arges ™
Radians to Inzrtial

Euler
U o prioriod

W) e T By A L I:l

Mot LMM T (mas) —®—> gy Foioral Tates

Fadizns o v
poot,gdot, rdot (Rdisas) degres v
Equations of hotian
YIS MO Mt iz Slider —
Glck
Ready [100% |ode4s A

References

[1] Bennani, S., D. M. C. Willemsen, and C. W. Scherer, “Robust LPV control
with bounded parameter rates,” AIAA-97-3641, August 1997.

2-20

Missile Guidance System

[2] Mracek, C. P. and J. R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
ATAA-97-3767, August 1997.

[3] Shamma, J. S. and J. R. Cloutier, “Gain-Scheduled Missile Autopilot Design
Using Linear Parameter Varying Transformations,” Journal of Guidance,
Control and Dynamics, Vol. 16, No. 2, March-April 1993.

[4] Lin, Ching-Fang, Modern Navigation, Guidance, and Control Processing,
Volume 2, ISBN 0-13-596230-7, Prentice Hall, 1991.

2-21

2 Case Studies

2-22

NASA HL-20 Lifting Body Airframe

This section shows how to model the airframe of a NASA HL-20 lifting body, a
low-cost complement to the Space Shuttle orbiter, with Simulink and the
Aerospace Blockset.

For most flight control designs, the airframe, or plant model, needs to be
modeled, simulated, and analyzed. Ideally, this airframe should be modeled
quickly, reusing blocks or model structure to reduce validation time and leave
more time available for control design. In this case study, the Aerospace
Blockset is used to rapidly model portions of the HL-20 airframe. The
remaining portions, including the calculation of the aerodynamic coefficients,
are modeled with Simulink. This case study examines the construction of the
Simulink model of the HL-20 airframe and touches on how the aerodynamic
data are used in the model.

This section includes the following topics:

* “NASA HL-20 Lifting Body” on page 2-22 provides an overview of the history
and purposes of the NASA HL-20 lifting body.

® “The HL-20 Airframe Model” on page 2-23 describes how the Aerospace
Blockset and Simulink are used to model the HL-20 airframe.

® “References” on page 2-35 provides a selected bibliography.

NASA HL-20 Lifting Body

The HL-20, also known as personnel launch system (PLS), is a lifting body
reentry vehicle designed to complement the Space Shuttle orbiter. It was
developed originally as a low-cost solution for getting to and from low Earth
orbit. It can carry up to 10 people and limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically
with booster rockets or by transporting it in the payload bay of the Space
Shuttle orbiter. The HL-20 lifting body deorbits using an onboard propulsion
system. Its reentry profile is nose first, horizontal, and unpowered.

NASA HL-20 lifting Body Airframe

&g Sugi ¥ L1 "

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

¢ Rapid turnaround between landing and launch reduces operating costs.
¢ The HL-20 has exceptional flight safety.

¢ It can land conventionally on runways.
Potential uses for the HL-20 include

e Orbital rescue of stranded astronauts

¢ International Space Station crew exchanges, if the Space Shuttle orbiter is
not available

® Observation missions

¢ Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data
from HL-20 tests are being used in current NASA projects [2].

The HL-20 Airframe Model

You can open the HL20 airframe model by entering aeroblk HL20 main at the
command line:

2-23

2 Case Studies

2-24

[=aerobllc_HL20 -0l x|

File Edit Wiew Simulation Format Tools Help

.;l.wo,p bue I

Visualzation
¥R and Gauges)

Scopes

Guithroe ip IMWEFS ofp ot i
1 Madkl lp bus

Gortrel ifpy

Guidance System

U GRS
& Radar Abimeter

HLZ0 version 1.0
Modified on 26-Jun-2003 14:22:14
based on

L —o{ Mokl avp bus - Sl Jadson E. 8., Cruz C. L.,
"Freliminary Subsanic Aerodynamic Model far
| ati Studies of the HL-20 Lifting Body",
Aidats, System NASA Th4302, August 1982

hodel
afp bus

Sirata System ofp Open HLZO Libmny

Fusifios Desmands Derrancs IMUSGFS oip

—bl?l Actuators Gontml System

Limhed
Actuztors

Ready [100% [od=4s v

HL-20 Airframe Model

If you are interested in flight control systems, there is an example of an
auto-land control for the HL-20 airframe in the Aerospace Blockset.

Modeling Assumptions and Limitations
Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA
document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

® The airframe is assumed to be rigid and have constant mass, center of
gravity, and inertia, since the model represents only the reentry portion of a
mission.

® HIL.-20 is assumed to be a laterally symmetric vehicle.
® Compressibility (Mach) effects are assumed to be negligible.

¢ Control effectiveness is assumed to vary nonlinearly with angle of attack and
linearly with angle of deflection. Control effectiveness is not dependent on
sideslip angle.

NASA HL-20 lifting Body Airframe

¢ The nonlinear six-degrees-of-freedom aerodynamic model is a representation
of an early version of the HL-20. Therefore the model is not intended for
realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

® Equations of motion

¢ Environmental models

e Calculation of aerodynamic coefficients, forces, and moments

The HL-20 airframe subsystem of the HL.-20 airframe model contains these
five subsystems, which model the typical airframe components:

® “6DoF (Euler Angles) Subsystem” on page 2-26

¢ “Environmental Models Subsystem” on page 2-27

® “Alpha, Beta, Mach Subsystem” on page 2-29

¢ “Aerodynamic Coefficients Subsystem” on page 2-30

® “Forces and Moments Subsystem” on page 2-34

2-25

2 Case Studies

2-26

[lLink: aeroblk_HL20/HLZ0 Airframe

File Edit Wiew Simulation Formst Tools Help

Actuators
(deg)

@—» Potuators

o {rch Coeft

—®par

Aerodynamic
Coefficients

abar

Thrust
O3]

car

I Coett

Thrust

it

gbar

Forces and Moments

qbar Speed of Sound

Wind \ilooity

Par

#ir Density
A
Wiind fogular Riates

O

Mach

Wb

par

9

alpha,beta

Ready

Alpha,Beta Mach

ol x|
e | Pcetls [%
" 20
We
. 20
e
F i)
-
4oy »{z)
Euler
o »{a)
EukrAngles DM
Fesed ¥ w6
ass b
Wb
@ L 2
M e (R} pa.r
deaidt
pdet.qdet rdat
£, i)
BDoF (Euker Angles)
Environment Models
fa e (o
Speed of Sound
¥ ot
Wind losity
Euler |
#ir Density
'Wind Fagular Rates DICM |t
[100% Jodeds 4

HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem

The 6DoF (Euler angles) subsystem contains the six-degrees-of-freedom
equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem,
the body attitude is propagated in time using an Euler angle representation.
This subsystem is one of the equations of motion blocks from the Aerospace
Blockset. A quaternion representation is also available. See the 6DoF (KEuler
Angles) and 6DoF (Quaternion) block reference pages for more information on
these blocks.

NASA HL-20 lifting Body Airframe

Environmental Models Subsystem

The Environmental Models subsystem contains the following
blocks/subsystems:

® The WGS84 Gravity Model block implements the mathematical
representation of the geocentric equipotential ellipsoid of the World Geodetic
System (WGS84).

See the WGS84 Gravity Model block reference page for more information on
this block.

¢ The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) standard lower atmospheric values for absolute
temperature, pressure, density, and speed of sound, given the input
geopotential altitude.
See the COESA Atmosphere Model block reference page for more
information on this block.

® The Wind Models subsystem contains the following blocks:

= The Wind Shear Model block adds wind shear to the aerospace model.

See the Wind Shear Model block reference page for more information on
this block.

= The Discrete Wind Gust Model block implements a wind gust of the
standard “1 — cosine” shape.
See the Discrete Wind Gust Model block reference page for more
information on this block.

= The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters.

See Dryden Wind Turbulence Model (Continuous) block reference page for
more information on this block.

These are some of the standard environmental blocks contained in the
Aerospace Blockset. The environmental models implement mathematical
representations within standard references, such as U.S. Standard
Atmosphere, 1976.

The following figures show the environmental and wind turbulence models
used in the model:

2-27

2 Case Studies

2-28

aeroblk_HL20/HL20 A

Environment Models

File Edit Wiew Simulation Formst

Tools Help

=1gix]

== = AR R R S [T ~]| b

I mE® T ®

Inemialm Body 9

Euer
Euker
ve ugegma
Wind Velbsity
(1 -4- pitspesd
Ve
= P
p|bou Wind Angular Rates
Wind Wadzls
TrE]
o
"~ iz
lul b m) % Speed of Sound
== bE
*% Height z-=h coEen =)
B — O]
AirDansiy
GOESA Awmaspher Wods]
o
oo
b ()
WGESEY
(Taylor Senes) 9 (s
Lat ideq) Gravity in Earth
Lethude omms
WGES84 Gravity Model
Ready [100%

[od=4s

Environmental Models in HL-20 Airframe Model

NASA HL-20 lifting Body Airframe

E!Link: aeroblk_HL20/.../Environment Models/Wind Models - |EI|1|
File Edit WYiew Simulation Format Tools Help

DSE&| BR[| r = Nom ey BmEL

(b (M)
Vg i)
(5 rrm{oom Shear
DCht
Wind Shear hiodel
Alitude car v
@ = h (m] ontinuous
R E] m—
3 F (v (mvs) F Y ug,vg,wg
Airspead O
Ll it (;y;?; @ ing (RIS
P3,93.@3
Dnyden Wind Turbulence hodel
(Continuous (+9 -n0)
P (ris) M i (TVE1
Discrete Gust
Discrete Wind Gust hodel - On
Ve
Euker

Ready [1o02 |odets v

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem

The Alpha, Beta, Mach subsystem calculates additional parameters needed for
the aerodynamic coefficient computation and lookup. These additional
parameters include

e Mach number

¢ Incidence angles (o,)

® Airspeed

® Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity
and corrects the body rates for wind angular acceleration:

2-29

2 Case Studies

2-30

E!Link: aeroblk_HL20/HL20 Airframe/Alpha,Beta,Mach

File Edit WYiew Simulation Format Tools Help

=10l x|

Rates

Ready

Alpta

o - .
, e "
b F = Ineid
W 2)

Inzidence, Sideslip

. .T:-\;
& Airspeed ; N Wach

Speed of Sound hdach Number Mach

LR PR

Air Density Cwnamic Fressue qbar

 JIERD

Wind Angular

Par

[1o02 |odets

4

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta,

Mach Subsystem)

Aerodynamic Coefficients Subsystem

The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the six aerodynamic coefficients, which are
implemented as in NASA document TM4302. However, the ground and landing
gear effects are not used in this aerodynamic model. The six aerodynamic

coefficients are as follows:

Cx
Cy
Cz
Cl
Cm
Cn

Axial-force coefficient
Side-force coefficient
Normal-force coefficient
Rolling-moment coefficient
Pitching-moment coefficient

Yawing-moment coefficient

NASA HL-20 lifting Body Airframe

The contribution of each of these is calculated in the subsystems (body rate,
actuator increment, and datum), then summed and passed to the Forces and
Moments subsystem.

E!Link: aeroblk_HL20/HL20 Airframe/Aerodynamic Coefficients - |EI|1|

File Edit WYiew Simulation Format Tools Help

W
@—Dp.q.r el
par

-

Apha

Body Rate
Lamping

J{ Apha
o B} ¥
Incid Beta Coeff

Datum Coefficients

Mach

¥

Apha

Beta el

T\r ¥

Actuator Deflections %

Actuators Actuator

Increments

Ready 100% odeds
4

Aerodynamic Coefficients in HL-20 Airframe Model

Aerodynamic Coefficient Calculation. The aerodynamic data was gathered from
wind tunnel tests, mainly on scaled models of a preliminary subsonic
aerodynamic model of the HL-20. The data was curve fitted, and most of the
aerodynamic coefficients are described by polynomial functions of angle of
attack and sideslip angle. In-depth details about the aerodynamic data and the
data reduction can be found in NASA document TM4302 [1].

The polynomial functions contained in the M-file aeroblk_init_h120.m are
used to calculate lookup tables used by the model’s preload function. Lookup
tables substitute for polynomial functions. Depending on the order and
implementation of the function, using lookup tables can be more efficient than
recalculating values at each time step with functions. To further improve

2-31

2 Case Studies

2-32

model efficiency, most tables are implemented as PreLook-up Index Search and
Interpolation (n-D) using PreLook-up blocks. These blocks improve efficiency
most when there are a number of tables with identical breakpoints. These
blocks reduce the number of times the model has to search for a breakpoint in
a given time step. Once the tables are populated by the preload function, the
aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided
among three subsystems:

® “Datum Coefficients Subsystem” on page 2-32

* “Body Rate Damping Subsystem” on page 2-33

® “Actuator Increment Subsystem” on page 2-33

Summing the Datum Coefficients, Body Rate Damping, and Actuator
Increments subsystem outputs generates the six aerodynamic coefficients used
to calculate the airframe forces and moments.

Datum Coefficients Subsystem. The Datum Coefficients subsystem calculates
coefficients for the basic configuration without control surface deflection. These
datum coefficients depend only on the incidence angles of the body:

[=]Link: aeroblk_HLZ0/.../Aerodynamic Coefficients/Datum Coefficients I (=13
Fle Edt View Smuation Formet Took Help
D@8 & B D] r = o Mg E RE TS
: .
o
@—b
oy
AlphaLokup
(Tl o0 T
=N
Beta Betalookup o
ol
{b—»
a
=0T
G
=5 T}
=N
[-]
s

=n =

Ready [100% [[lode4s 4

Datum Coefficients Subsystem

NASA HL-20 lifting Body Airframe

Body Rate Damping Subsystem. Dynamic derivatives are computed in the Body
Rate Damping subsystem:

[S1Link: aeroblk_HL20;.../Aerodynamic Coefficients/Body Rate Damping =101 x|
File Edit Wiew Simulation Format Tools Help
D& L2 52 b o Nom eS| RE T ®
Alphaloakup
u.;ﬂ:? W Hlpia
Alpha
P
| Alpts
a
L laipe
@
P

Ready [100% [odeds 4

Body Rate Damping Subsystem

Actuator Increment Subsystem. Lookup tables determine the incremental changes
to the coefficients due to the control surface deflections in the Actuator
Increment subsystem. Available control surfaces include symmetric wing flaps
(elevator), differential wing flaps (ailerons), positive body flaps, negative body
flaps, differential body flaps, and an all-movable rudder:

2-33

2 Case Studies

2-34

Flapipos)

[ZiLink: aeroblk_HL20;.../Aerodynamic Coefficients/Actuator Increments -101]
File Edit Wew Smulation Format Tools Help
DSE&| %=l =z r 8| voma Tl | @ T @
Alphalockup
- Apts
Alpha delCoatt
P Actuators
Ailmn
| Aipa
deCoeff
| tumtore
@) Elevater
Beta -
delCosft
Rudder
&— e
Actuator T N
Deflections et > ol
’—>+

delCosft

Flapineg)

- Alpts

el Coeft

A 4

At

Flap(difi]

Ready [100% [[od=4s

Actuator Increments Subsystem

Forces and Moments Subsystem

The last subsystem in the HL-20 airframe model is Forces and Moments. The
Forces and Moments subsystem calculates the body forces and body moments
acting on the airframe about the center of gravity. These forces and moments
depend on the aerodynamic coefficients, thrust, dynamic pressure, and
reference airframe parameters. The equations defining the body forces and
body moments are found in NASA document TM4302 [1].

NASA HL-20 lifting Body Airframe

[iLink: aeroblk_HL20/HLZ0 Airframe,/Forces and Moments - (ol x|

File Edit Wiew Simulation Formst Tools Help

DEES| & =R = afons ZME s | BRET @

A
Gross Product

G =B
[eq -5 =i Q] 8

Woments about 353 Gmss Product

Centre of Grawity

Ready [100% [[Jodeds 4

Forces and Moments Subsystem

Completing the Model

The Simulink and the Aerospace Blockset subsystems that you have examined
complete the HL-20 airframe. The next step in the flight control design process
is to analyze, trim, and linearize the HL-20 airframe so that a flight control
system can be designed for it. You can see an example of an auto-land flight
control for the HL-20 airframe by entering aeroblk_HL20_main in the
Command Window.

References

Additional information about the HL-20 lifting body can be found at
http://www.astronautix.com/craft/h120.htm.

[1] Jackson E. B, and C. L. Cruz, C. L., “Preliminary Subsonic Aerodynamic
Model for Simulation Studies of the HL-20 Lifting Body,” NASA TM4302
(August 1992). This document is included in the zip file available from
MATLAB Central.

[2] Morring, F., Jr., “ISS ‘Lifeboat’ Study Includes ELVs,” Aviation Week &
Space Technology (May 20, 2002).

See also:
http://www.aviationnow.com/content/publication/awst/20020520/aw46.
htm.

2-35

2 Case Studies

2-36

Ideal Airspeed Correction

This section demonstrates how to create indicated and true airspeed using
Simulink and the Aerospace Blockset. To find out more, read the following

sections:

¢ “Airspeed Correction Models” on page 2-36 shows how to open the models

that are used in this case study.

® “Measuring Airspeed” on page 2-37 describes the different types of airspeed

used in aerospace engineering.

® “Modeling Airspeed Correction” on page 2-38 describes how the Ideal
Airspeed Correction block is implemented in the two models.

® “Simulating Airspeed Correction” on page 2-41 describes how to run the

model simulation.

Airspeed Correction Models

To view the airspeed correction models, enter the following at the MATLAB

command line.
aeroblk_indicated
and

aeroblk calibrated

E!aernblk_indicated

File Edit View Simulation Format Tools Help

=10l x|

DEE&S $BE[< 2| r 5 [Nomd '”@Iﬁ”ﬂﬁ@

True Alrspead

72
Aitude TR |—> TAS (lis)
2 iks) 2) GAS (i)
500 ity P it
coEsa Fles L L
p islugit®) Ideal Aispesd Gomection

Flap s=tting

COESA Atmosphers Model
40

Flap s=mings:

0 degrees,
10 degres, or
40 degmes

Cessna 1500 Gommuter

See Aispeed Galibmtion Tahle

Cakulzte A5

Ready [100%

[FixedstepDiscrete

aeroblk_indicated Model

Ideal Airspeed Correction

=] aeroblk_calibrated =] |
File Edit ‘“iew Simulation Format Tools Help
DEE&| =R r = om e REa @
Indicated Aispesd
70 1as
Flap sattings: | FAP==tnG cas I [E—
0 degrees, | Ay >
10 degrees, or o B Fap
40 d
RS e T3] cemmons LDGAS) Diplay
a fhts) P fls) TAS (kts)
500 h
" s P“’SS‘J WP, tp=i
p ishigit™y Ideal Aimpesd Gomection Seope
GOESA Atmosphem hiodel
Gessna 150M Commuter
See Aispeed Calbmtion Tablke
Ready [100% [FixedstepDiscrete v

aeroblk_calibrated Model

Measuring Airspeed

To measure airspeed, most light aircraft designs implement pitot-static
airspeed indicators. Pitot-static airspeed indicators measure airspeed by an
expandable capsule that expands and contracts with increasing and decreasing
dynamic pressure. This is known as calibrated airspeed (CAS), which denotes
the airspeed that a pilot would see in the cockpit of an aircraft.

To help compensate for measurement errors, airspeed is divided into three
definitions of measurement:

Airspeed Type

Description

See Also

Calibrated

Equivalent

True

Indicated airspeed that is
corrected for the
calibration error

Calibrated airspeed that
is corrected for the
compressibility error

Equivalent airspeed that
is corrected for the density
error

“Examining the
Calibration Error” on
page 2-38

“Examining the
Compressibility Error” on
page 2-38

“Examining the Density
Error” on page 2-38

2-37

2 Case Studies

Examining the Calibration Error

An airspeed indicator features a static vent to maintain a pressure equal to
atmospheric pressure inside the instrument. Position and placement of the
static vent along with angle of attack and velocity of the aircraft will determine
the pressure inside the airspeed indicator, and thereby, the amount of
calibration error of the airspeed indicator. Therefore, a calibration error is
specific to an aircraft’s design.

An airspeed calibration table, which is usually included in the pilot operating
handbook or other aircraft documentation, helps pilots convert the indicated
airspeed to the calibrated airspeed.

Examining the Compressibility Error

The ability of air to resist compression diminishes as altitude and airspeed
increases, or when contained in a restricted volume. A restricted volume of air
exists within a pitot-static airspeed indicator. When flying at high altitudes
and high airspeeds, calibrated airspeed is always higher than equivalent
airspeed. Equivalent airspeed can be derived by compensating the calibrated
airspeed for the compressibility error.

Examining the Density Error

At high altitudes, airspeed indicators read lower than true airspeed because of
lower air density. True airspeed represents the compensation of equivalent
airspeed for the density error, which translates to the difference in air density
at altitude from the air density at sea level on a standard day.

Modeling Airspeed Correction

The aeroblk_indicated and aeroblk_calibrated models show how to take
true airspeed and correct it to indicated airspeed for instrument display in a
Cessna 150M Commuter airplane. The aeroblk_indicated model implements
a conversion to indicated airspeed, and the aeroblk calibrated model
implements a conversion to true airspeed.

Each model consists of two main components:

® “COESA Atmosphere Model Block” on page 2-39 calculates the change in
atmospheric conditions with changing altitude.

¢ “Ideal Airspeed Correction Block” on page 2-39 transforms true airspeed to
calibrated airspeed and vice versa.

2-38

Ideal Airspeed Correction

COESA Atmosphere Model Block

The COESA Atmosphere Model block is a mathematical representation of the
1976 Committee on Extension to the Standard Atmosphere (COESA) United
States standard lower atmospheric values for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.Below 32000
meters (approximately 104987 feet), the U.S. Standard Atmosphere is identical
with the Standard Atmosphere of the International Civil Aviation
Organization (ICAO).

The aeroblk_indicated and aeroblk_calibrated models use the COESA
Atmosphere Model block to supply the speed of sound and air pressure inputs
for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block

The Ideal Airspeed Correction block lets you compensate for the airspeed
measurement errors to convert airspeed from one type to another type. The
following table contains the Ideal Airspeed Correction block’s airspeed inputs
and outputs:

Airspeed Input Airspeed Output

True Airspeed Equivalent airspeed
Calibrated airspeed

Equivalent Airspeed True airspeed
Calibrated airspeed

Calibrated Airspeed True airspeed

Equivalent airspeed

In the aeroblk_indicated model, the Ideal Airspeed Correction block
transforms true airspeed to calibrated airspeed. In the aeroblk calibrated
model, the Ideal Airspeed Correction block transforms calibrated airspeed to
true airspeed.

To understand how the Ideal Airspeed Correction block implements airspeed
transformations as mathematical formulas, see the following sections:

2-39

2 Case Studies

® “True Airspeed Implementation” on page 2-40
® “Calibrated Airspeed Implementation” on page 2-40

¢ “Equivalent Airspeed Implementation” on page 2-40

True Airspeed Implementation. True airspeed (TAS) is implemented as an input
and as a function of equivalent airspeed (EAS), which can be expressed as:

ag 5

The symbols are defined as follows:

a Speed of sound at altitude in m/s?
) Relative pressure ratio at altitude
ag Speed of sound at mean sea level in m/s?

Calibrated Airspeed Implementation. Calibrated airspeed (CAS). which is derived
using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, can be expressed as:

2yP -1y
CAS = —|: g9 +1 _ 1:|
J (v=Dpg (Po)

The symbols are defined as follows:

Po Air density at mean sea level in kg/m3

P, Static pressure at mean sea level in N/m?

Y Specific heat ratio

q Dynamic pressure at mean sea level in N/m?2

Equivalent Airspeed Implementation. Equivalent airspeed (EAS). which is derived
using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, can be expressed as:

2-40

Ideal Airspeed Correction

EAS = «/ (v %ylf))po[(l%

G-1)/
+1) ! y-1]

The symbols are defined as follows:

Po Air density at mean sea level in kg/m3

P Static pressure at altitude in N/m?

Y Specific heat ratio

q Dynamic pressure at mean sea level in N/m?

Simulating Airspeed Correction

In the aeroblk_indicated model, the aircraft is defined to be traveling at a
constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps
are set to 40 degrees. The COESA Atmosphere Model block takes the altitude
as an input and outputs the speed of sound and air pressure. Taking tbe speed
of sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction
block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS
subsystem uses the flap setting and calibrated airspeed to calculate indicated

airspeed.

As you can see in the following figure, the display shows both indicated

airspeed and calibrated airspeed:

E[aernhlk_indicated

File Edit Wiew Simulation Format Tools Help

=10l x|

D SES| $BE|22r = Nm o] i B | BT @

True Aispesd

e
Airude T |—> TS (=)
& fas))= =) GAS (k)
o N e P P, ipsi)
Flap s=tting £ ishigtt) \de=l Aispeed Gomeetan

GOESA Atmospher= hiodel
40

2]

Flap s=ttings:
0 degres,

Cakulze 145

Ceassna 150M Commuter

See Airpeed Calibmtion Tablke

10 degrees, or
40 degrees

Ready 100%

|F|xEdStepD|screte

2-41

2 Case Studies

In the aeroblk _calibrated model, the aircraft is defined to be traveling at a
constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The
flaps are set to 10 degrees. The COESA Atmosphere Model block takes the
altitude as an input and outputs the speed of sound and air pressure. The
Calculate CAS subsystem uses the flap setting and indicated airspeed to
calculate the calibrated airspeed. Finally, using the speed of sound, air
pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction
block converts calibrated airspeed back to true airspeed.

As you can see in the following figure, the display shows both calibrated
airspeed and true airspeed:

=l aeroblk_calibrated =131 x|
File Edit View Simulation Format Toaols Help
D& & B2 r =|Nm &y | RE T ®
Indicated Airspeed
0 = 145
Flap attngs: | F3E==tna o4z I
0 degees, 10 w{Rap - 5051
10 degmes, or
40 d "
e Alitude T » . Gakulatz GAS GAS (=] g
= (ki) = fkts) TAS (kts)
s00 h it} ot 3 (PZ‘J > Pn ipsi)
fislugitt) —P. ldeal Airspeed Gomection Seope
COESA Atrosphers Wodel
Cessna 1500 Commuter
See Airspeed Calibmtion Tablke
Ready [100% |FixedstepDiscrete v

2-42

Block Reference

Blocks — By Category (p. 3-2) Aerospace Blockset blocks by category
Blocks — Alphabetical List (p. 3-11) Aerospace Blockset blocks by name

3 Block Reference

Blocks — By Category

The Aerospace Blockset’s block library, aerolib, is organized into libraries
according to their behavior. The aerolib window displays the block library

icons and names:

Actuators Library
Aerodynamics Library
Animation Library

Environment Library

Flight Parameters Library
Equations of Motion Library

GNC Library

Mass Properties Library

Propulsion Library

Utilities Library

Actuator models
Aerodynamics models
3-D animation during simulation

Environmental models, including the
Atmosphere sublibrary, the Gravity
sublibrary, and the Wind sublibrary

Flight parameter models

Equation of motion models, including the
3DoF sublibrary and the 6DoF sublibrary

Gain scheduling models, including the
Controls sublibrary and the Guidance
sublibrary

Center of gravity and tensor models
Simple propulsion system models

Common mathematical operations and
conversions, including the Axes
Transformations sublibrary, the Unit
Conversions sublibrary, and the Math
Operations sublibrary

Blocks — By Category

Actuators Library

Second Order Linear Implement a second-order linear actuator
Actuator

Second Order Nonlinear Implement a second-order nonlinear actuator
Actuator with rate and deflection limits

Aerodynamics Library

Aerodynamic Forces and Compute the aerodynamic forces and moments

Moments using the aerodynamic coefficients, dynamic
pressure, center of gravity, and center of
pressure

Animation Library

3DoF Animation Create a 3-D Handle Graphics® animation of a
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a
six-degrees-of-freedom object

Environment Library
The Environment Library contains the following sublibraries:

3 Block Reference

Atmosphere sublibrary
COESA Atmosphere Model

ISA Atmosphere Model

Lapse Rate Model
Non-Standard Day 210C
Non-Standard Day 310

Pressure Altitude

Gravity sublibrary
WGS84 Gravity Model

World Magnetic Model 2000

Wind sublibrary
Discrete Wind Gust Model

Dryden Wind Turbulence
Model (Continuous)

Dryden Wind Turbulence
Model (Discrete)

Horizontal Wind Model

Von Karman Wind
Turbulence Model
(Continuous)

Wind Shear Model

Implement the 1976 Committee on Extension
to the Standard Atmosphere (COESA) lower
atmosphere

Implement the International Standard
Atmosphere (ISA)

Implement Lapse Rate Model for atmosphere
Implement the MIL-STD-210C climatic data
Implement the MIL-HDBK-310 climatic data

Calculate pressure altitude based on ambient
pressure

Implement the 1984 World Geodetic System
representation of Earth’s gravity

Calculate the Earth's magnetic field at a
specific location and time using the World
Magnetic Model 2000 (WMM2000)

Generate discrete wind gust

Generate wind turbulence with the Dryden
velocity spectra

Generate wind turbulence with the Dryden
velocity spectra

Transform horizontal wind into body-axes
coordinates

Generate atmospheric turbulence

Calculate wind shear conditions

Blocks — By Category

Flight Parameters Library

Dynamic Pressure

Ideal Airspeed Correction

Incidence & Airspeed

Incidence, Sideslip &
Airspeed

Mach Number

Relative Ratio

Compute dynamic pressure using velocity and
air density

Calculate equivalent airspeed (EAS), calibrated
airspeed (CAS), or true airspeed (TAS) from
each other

Calculate incidence and air speed

Calculate incidence, sideslip and air speed

Compute Mach number using velocity and
speed of sound

Calculate relative atmospheric ratios

Equations of Motion Library
The Equations of Motion library contains the following sublibraries:

3 Block Reference

3DoF sublibrary

3DoF (Body Axes) Implement three-degrees-of-freedom equations
of motion

Custom Variable Mass Implement three-degrees-of-freedom equations

3DoF (Body Axes) of motion

Simple Variable Mass 3DoF Implement three-degrees-of-freedom equations

(Body Axes) of motion

6DoF sublibrary

6DoF (Euler Angles) Implement an Euler angle representation of

six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of
six-degrees-of-freedom equations of motion
Custom Variable Mass Implement an Euler angle representation of
6DoF (Euler Angles) six-degrees-of-freedom equations of motion
Custom Variable Mass Implement a quaternion representation of
6DoF (Quaternion) six-degrees-of-freedom equations of motion
Simple Variable Mass 6DoF Implement an Euler angle representation of
(Euler Angles) six-degrees-of-freedom equations of motion
Custom Variable Mass Implement a quaternion representation of
6DoF (Quaternion) six-degrees-of-freedom equations of motion

GNC Library
The GNC library contains the following sublibraries:

Blocks — By Category

Controls sublibrary

1D Controller
[A(v),B(v),C(v),D(v)]

1D Controller Blend
u=(1-L).K1l.y+L.K2.y

1D Observer Form
[A(V),B(v),C(v),F(v),H(v)]

1D Self-Conditioned
[A(v),B(v),C(v),D(v)]

2D Controller
[A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

3D Controller
[A(¥),B(v),C(v),D(v)]

3D Observer Form
[AV),B(v),C(v),F(v),H(v)]

3D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on one scheduling
parameter

Implement a 1-D vector of state-space
controllers by linear interpolation of their
outputs

Implement a gain-scheduled state-space
controller in an observer form depending on
one scheduling parameter

Implement a gain-scheduled state-space
controller in a self-conditioned form

Implement a gain-scheduled state-space
controller depending on two scheduling
parameters

Implement a 2-D vector of state-space
controllers by linear interpolation of their
outputs

Implement a gain-scheduled state-space
controller in an observer form depending on
two scheduling parameters

Implement a gain-scheduled state-space
controller in a self-conditioned form

Implement a gain-scheduled state-space
controller depending on three scheduling
parameters

Implement a gain-scheduled state-space
controller in an observer form depending on
three scheduling parameters

Implement a gain-scheduled state-space
controller in a self-conditioned form

3 Block Reference

Gain Scheduled Lead-Lag Implement a first-order lead-lag with
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs
x,y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a
self-conditioned form

Guidance sublibrary

Calculate Range Calculate the range between two crafts given
their respective positions

Mass Properties Library
Estimate Center of Gravity Calculate the center of gravity location
Estimate Inertia Tensor Calculate the inertia tensor

Moments About CG Due to Compute moments about center of gravity due
Forces to forces that are applied at point CP, not the
center of gravity

Symmetric Inertia Tensor Create an inertia tensor from moments and
products of inertia

Propulsion Library

Turbofan Engine System Implement a first-order representation of a
turbofan engine with controller

Utilities Library

The Utilities library contains the following sublibraries:

Blocks — By Category

Axes Transformations sublibrary

Direction Cosine Matrix to
Euler Angles

Direction Cosine Matrix to
Quaternions

Euler Angles to Direction
Cosine Matrix

Euler Angles to
Quaternions

Quaternions to Direction
Cosine Matrix

Quaternions to Euler
Angles

Convert direction cosine matrix to Euler angles

Convert direction cosine matrix to quaternion
vector

Convert Euler angles to direction cosine matrix
Convert Euler angles to quaternion vector
Convert quaternion vector to direction cosine

matrix

Convert quaternion vector to Euler angles

Math Operations sublibrary

3x3 Cross Product

Adjoint of 3x3 Matrix

Create 3x3 Matrix
Determinant of 3x3 Matrix

Invert 3x3 Matrix

SinCos

Calculate the cross product of two 3-by-1
vectors

Compute the adjoint matrix for the input
matrix

Create a 3-by-3 matrix from nine input values
Compute the determinant for the input matrix

Compute the inverse of 3-by-3 matrix using
determinant formula

Compute the sine and cosine of input angle

Unit Conversions sublibrary

Acceleration Conversion

Angle Conversion

Convert from acceleration units to desired
acceleration units

Convert from angle units to desired angle units

3-9

3 Block Reference

3-10

Angular Acceleration
Conversion

Angular Velocity
Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Convert from angular acceleration units to
desired angular acceleration units

Convert from angular velocity units to desired
angular velocity units

Convert from density units to desired density
units

Convert from force units to desired force units

Convert from length units to desired length
units

Convert from mass units to desired mass units

Convert from pressure units to desired
pressure units

Convert from temperature units to desired
temperature units

Convert from velocity units to desired velocity
units

Blocks — Alphabetical List

Blocks — Alphabetical List

1D Controller [A(v),B(v),C(v),D(V)] 4-14
1D Controller Blend u=(1-L).K1.y+L.K2.y 4-17
1D Observer Form [A(v),Bv),CV),FV),H™)] 4-20
1D Self-Conditioned [A(v),B(v),C(v),D(¥)] 4-23
2D Controller [A(v),Bv),CV),DV)] 4-27
2D Controller Blend 4-30
2D Observer Form [A(v),Bv),Cv),Fv),H™)] 4-34
2D Self-Conditioned [A(Vv),B(v),C(v),D(V)] 4-38
3D Controller [Av),B(v),C(v),D(V)] 4-42
3D Observer Form [A(v),Bv),CWV),F"),HW)] 4-46
3D Self-Conditioned [A(v),B(v),C(v),D¥)] 4-50
3DoF Animation i 4-54
BDOF (Body AXES) .. ooiii 4-57
3x3 Cross Product 4-62
6DOF Animationt e 4-63
6DoF (Euler Angles) 4-65
6DoF (Quaternion) i 4-71
Acceleration Conversionc..tiiiiiiiiiie 4-76
Adjoint of 3x3 Matrixo e 4-78
Aerodynamic Forces and Moments 4-80
Angle Conversionc.iiitt it e 4-82
Angular Acceleration Conversionooiiiueeennnnnn. 4-84
Angular Velocity Conversionuiiiiiineneennnnn. 4-86
Calculate Range i i i 4-88
COESA Atmosphere Model 4-89
Create 3x3 MatrixXcuiiii e 4-92
Custom Variable Mass 3DoF (Body Axes) 4-94
Custom Variable Mass 6DoF (Euler Angles) 4-99
Custom Variable Mass 6DoF (Quaternion) 4-105
Density Conversionc..uiiiiiiiieee .. 4-110
Determinant of 3x3 Matrix 4-112
Direction Cosine Matrix to Euler Angles 4-113
Direction Cosine Matrix to Quaternions 4-115
Discrete Wind Gust Model 4-117
Dryden Wind Turbulence Model (Continuous) 4-120

3-11

3-12

Dryden Wind Turbulence Model (Discrete) 4-132
Dynamic Pressure e 4-144
Estimate Center of Gravity i ... 4-145
Estimate Inertia Tensor e, 4-147
Euler Angles to Direction Cosine Matrix 4-149
Euler Angles to Quaternions 4-151
Force Conversion i 4-153
Gain Scheduled Lead-Lag 4-155
Horizontal Wind Model 4-156
Ideal Airspeed Correctionc.0iiiiiiiieunnnennn.. 4-158
Incidence & Airspeed 4-161
Incidence, Sideslip & Airspeed 4-162
Interpolate Matrix(X)ottt e 4-164
Interpolate Matrix(X,y)oiuiiiii e e e e 4-166
Interpolate Matrix(X,y,2)o u ittt e 4-168
Invert 3x3 Matrixoutii e 4-171
ISA Atmosphere Model 4-172
Lapse Rate Model 4-173
Length Conversion ittt 4-177
Mach Number i i 4-179
Mass ConversiOnuiitteemiiiiii e 4-180
Moments About CG DuetoForces 4-182
Non-Standard Day 210C 4-183
Non-Standard Day 310 i, 4-187
Pressure Altitude e 4-191
Pressure Conversionttt 4-193
Quaternions to Direction Cosine Matrix 4-195
Quaternions to Euler Angles 4-197
Relative Ratio i i 4-199
Second Order Linear Actuator 4-201
Second Order Nonlinear Actuator 4-202
Self-Conditioned [A,B,C.D] 4-204
Simple Variable Mass 3DoF (Body Axes) 4-208
Simple Variable Mass 6DoF (Euler Angles) 4-214
Simple Variable Mass 6DoF (Quaternion) 4-220
SINC0S et 4-226
Symmetric Inertia Tensor 4-227

Blocks — Alphabetical List

Temperature Conversionc..uiiiiiiieeenennnnnnn.. 4-228
Turbofan Engine System 4-230
Velocity Conversionuiiiiiiie e 4-233
Von Karman Wind Turbulence Model (Continuous) 4-235
WGS84 Gravity Model i 4-248
Wind Shear Model 4-252
World Magnetic Model 2000 4-255

3-13

1D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

w
W

Dialog Box

3-14

Implement a gain-scheduled state-space controller depending on one
scheduling parameter

GNC/Controls

The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A()x+B(v)y
u= C(v)x +D(v)y

where v is a parameter over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

Block Parameters: 1D Controller [A{¥),B(¥),C |
— StateSpacetBCD-10 [mazk] (link)

Implement a state-space controller [4,B,C.0) where &, B, C, and D
depend on one scheduling parameter, .

— Parameters
A-mnatriz(v]:
fa

B-rnatris(]:
E

C-rnatris]:
fC

Dr-ratrisf]:
o1

Scheduling variable breakpaints:

Iv_vec
Iritial state, #_initial:
o

Qk. I Cancel Help Apply

1D Controller [A(v),B(v),C(v),D(v)]

A-matrix(v)

A-matrix of the state-space implementation. In the case of 1D scheduling,
the A-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then

A1) =[10;0 1];.

B-matrix(v)

B-matrix of the state-space implementation. In the case of 1D scheduling,
the B-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then

B(:,:,1) = [1 0;0 1];.

C-matrix(v)

C-matrix of the state-space implementation. In the case of 1D scheduling,
the C-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(,:,1)=10;0 11;.

D-matrix(v)

D-matrix of the state-space implementation. In the case of 1D scheduling,
the D-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then

D(,:,1) = [1 0;0 1.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

3-15

1D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

3-16

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk 1lib HL20 demo library for an example of this block.
1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

Purpose

Library

Description

¥
)

Implement a 1-D vector of state-space controllers by linear interpolation of
their outputs

GNC/Controls

The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of
state-space controller designs. The controllers are run in parallel, and their
outputs interpolated according to the current flight condition or operating
point. The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need to vary
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points
U=U,,ip, and v=v,,,,. The 1D Controller Blend block implements

uy = Cixy+Dyy
Ug = C2x2 +Dyy

u=(1-Mus+2ruy

min
v—-0U_ -
A= o Umin svs Umax
v -0
max min
1 V>V,

For longer arrays of design points, the blocks only implement nearest neighbor
designs. For the 1D Controller Blend block, at any given instant in time, three
controller designs are being updated. This reduces computational
requirements.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

3-17

1D Controller Blend u=(1-L).K1.y+L.K2.y

Dialog Box

3-18

Block Parameters: 1D Controller Blend: u={1-1 |
— Blend-10 [maszk] [link]

Blend between outputs of a 1-D' vector of state-space controllers. All
controllers must have the same state dimension.

— Parameters
A-matris(v]:
1

B-matrisf]:
B

C-matrisf]:
jci

D1-ratriss):
|0

Scheduling wariable breakpoints:

|[1 152]

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel Help Apply

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1D blending, the
A-matrix should have three dimensions, the last one corresponding to
scheduling variable v. Hence, for example, if the A-matrix corresponding to
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.
B-matrix(v)
B-matrix of the state-space implementation.

C-matrix(v)

C-matrix of the state-space implementation.
D-matrix(v)

D-matrix of the state-space implementation.

1D Controller Blend u=(1-L).K1.y+L.K2.y

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

This block requires the Control System Toolbox.

Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

1D Controller [A(v),B(v),C(v),D(¥)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller Blend

3-19

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem
W

U_meas

u_dem

Dialog Box

3-20

GNC/Controls

Implement a gain-scheduled state-space controller in an observer form
depending on one scheduling parameter

The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form

= (A() +H@)C(v)x + B(0)U,p, 0 T HO)Y =Y gom)

Ugem= F(v)x

Block Parameters: 1D Observer Form [A{v),E

— StateSpacedBCFH-10 [maszk] (link)

Implement a state-zpace controller [&,B C.F H] in obzerver form where &,
B.C.F. and H depend on one scheduling parameater.

The main application of this blocks is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the
u -Analysis and Synthesis Toolbox.

— Parameters
A-matris(v]:

A

B-matrisf]:

E

C-matrisf]:

Ic

F-matrix[+]:

|F

H-matriss]):

|

Scheduling wariable breakpoints:

Iv_vec

Initial ztate, =_initial:

o

[u]4 I Cancel

Help

Apply

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.

Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 11;.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.

Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 11;.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for example, if
the F-matrix corresponding to the first entry of v is the identity matrix,
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. Hence,
for example, if the H-matrix corresponding to the first entry of v is the
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints

Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the set-point error.

3-21

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

The second input is the scheduling variable.
The third input is measured actuator position.
The output is the actuator demands.

Assumptions If the scheduling parameter input to the block goes out of range, then it is
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk 1lib HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]
1D Controller Blend u=(1-L).K1.y+L.K2.y
1D Self-Conditioned [A(v),B(v),C(v),D(v)]
2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-22

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

W
w u_dem

u_meas

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC/Controls

The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(v)x+B(v)y
u= C(v)x+D(v)y

in the self-conditioned form

2= (A(v)-H@)C(v))z + (B(v)-H((v)D(v))e+ H(v)u
Ugem= C(v)z+D(v)e

meas

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
parameter over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a
function of v, which is often the case in aerospace applications.

3-23

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog Box

3-24

Block Parameters: 1D Self-Conditioned [A(\E |
— StateSpaceSelfiCond-10 [mask] [link]

Implement a state-space controller [4[w) B[], Cl+].D[+]] in a
zelf-conditioned form. |f u_meaz = u_dem, then the implemented controller
iz [8.B.C.0] If u_meas is limited, 2.g.. rate limiting. then the pales of the
controller become thoze defined in the mask dialog box, Uzes call to
Cantral Spstems Taoolbax function place. m when intializing. & B. C. and D
should be 3-D matrices, the last dimension coresponding to the
zcheduling parameter, and the first bwo comezponding to the matrix for a
given zet of scheduling parameter values.

— Parameters
A-matris(v]:

A

B-matrisf]:

E

C-matrisf]:

Ic

D1-ratriss):

D

Scheduling wariable breakpoints:

Iv_vec:

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel Help Apply

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 11;.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 11;.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The third input is the measured actuator position.

The output is the actuator demands.

If the scheduling parameter input to the block goes out of range, then it is
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

3-25

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

References

See Also

3-26

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Controller [A(v),B(v),C(v),D(¥)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

W
il

w2

Dialog Box

|

Implement a gain-scheduled state-space controller depending on two
scheduling parameters

GNC/Controls

The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(v)x+B(v)y
u= C(v)x +D(v)y
where v is a vector of parameters over which A, B, C, and D are defined. This

type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Block Parameters: ZD Controller [A{y),B{y),C{ |
— StateSpacetBCO-20 [mask] (link]

Implement a state-space controller [4,B . C.0] where &, B, C, and D
depend on two scheduling parameters, »1 and w2

— Parameters
A-matrigv1 v 2]
A

B-matriz[+1,%2):
I
C-matris{+1,%2)
Ic
D -matria(1 2]
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second scheduling waniable [+2) breakpoints:

|v2_vec

Initial state, &_initial:

|0

(] 4 I Cancel Help Aol

3-27

2D Controller [A(v),B(v),C(v),D(v)]

3-28

A-matrix(vl,v2)

A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then A(:,:;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)

B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,:;,1,1) = [1 0;0 1];.

C-matrix(vl,v2)

C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

D-matrix(vl,v2)

D-matrix of the state-space implementation. In the case of 2D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial

Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

2D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

The first input is the measurements.

The second and third block inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

If the scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See H-Infinity Controller (2 Dimensional Scheduling) in the
aeroblk 1lib HL20 demo library for an example of this block.

1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Controller [A(v),B(v),C(v),D(v)]

3-29

2D Controller Blend

Purpose

Library

Description

W
wi

w2

3-30

Implement a 2-D vector of state-space controllers by linear interpolation of
their outputs

GNC/Controls

The 2D Controller Blend block implements an array of state-space controller
designs. The controllers are run in parallel, and their outputs interpolated
according to the current flight condition or operating point. The advantage of
this implementation approach is that the state-space matrices A, B, C, and D
for the individual controller designs do not need to vary smoothly from one
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

2D Controller Blend

Dialog Box

|

Block Parameters: 2D Controller Blend #
— Blend-20 [maszk] [link]

Blend between outputs of a 2-D vector of state-space controllers. All
controllers must have the same state dimension.

— Parameters
A-matrigv1 v 2]
A

B-matriz[+1,%2):
B
C-matrisfv],w2)
Ic
Dr-matris(1, w2):
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel | Help | Apply |

A-matrix(vl,v2)
A-matrix of the state-space implementation. In the case of 2D blending, the
A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)
B-matrix of the state-space implementation.

C-matrix(vl,v2)
C-matrix of the state-space implementation.

3-31

2D Controller Blend

Inputs and
Outputs

Assumptions
and Limitations

References

3-32

D-matrix(vl,v2)
D-matrix of the state-space implementation.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The output is the actuator demands.
This block requires the Control System Toolbox.
Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight

Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

2D Controller Blend

See Also

1D Controller Blend u=(1-L).K1.y+L.K2.y
2D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-33

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem

wi
w2 u_dem

U_meas

3-34

Implement a gain-scheduled state-space controller in an observer form
depending on two scheduling parameters

GNC/Controls

The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A() +H@)C(v)x+ B0 * HO)Y =Y gom)
Ugem= F(v)x

The main application of these blocks is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported by the
p -Analysis and Synthesis Toolbox.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 2D Obseryer Form [A(y¥),

— StateSpacetBCFH-20D [mask] (link)

Implement a state-space controller [4,B C.F H] in obzerver form where &,
B.C.F. and H depend on bwo zcheduling parameters.

— Parameters
A-matrigv1 v 2]

A

B-matriz[+1,%2):

B

C-matrisfv],w2)

Ic

F-mnatrix(«1 %2

|F

H-matris(1,w2):

|

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Initial ztate, =_initial:

o

Ok, I Cancel | Help Apply

A-matrix(vl,v2)

A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity

matrix, then A(:,:;,1,1) = [1 0;0 1];.

B-matrix(vl,v2)

B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity

matrix, then B(:,;,1,1) = [1 0;0 1];.

|

3-35

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

3-36

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

F-matrix(vl,v2)
State-feedback matrix. In the case of 2D scheduling, the F-matrix should
have four dimensions, the last two corresponding to scheduling variables
v1 and v2. Hence, for example, if the F-matrix corresponding to the first
entry of vl and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1
0;0 1];.

H-matrix(vl,v2)
Observer (output injection) matrix. In the case of 2D scheduling, the
H-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the H-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then H(:,;,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
|

Assumptions If the scheduling parameter inputs to the block goes out of range, then they are
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (2 Dimensional Scheduling) in the
aeroblk_lib HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(V)]
2D Controller [A(v),B(v),C(v),D(v)]
2D Controller Blend
2D Self-Conditioned [A(v),B(v),C(v),D(v)]
3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-37

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

¥

:; u_dem

u_meas

3-38

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC/Controls

The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(v)x +B(v)y
u= C(v)x +D(v)y

in the self-conditioned form

2= (A(v)-H@)C(v))z + (B(v)-H()D(v))e+ H(v)u
Ugem= C(v)z+D(v)e

meas

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

2D Self-Conditioned [A(v),B(v),C(v),D(Vv)]
|

Dialog Box
Block Parameters: 2D Self-Conditioned [Al(y |

— StateSpaceSelfCond-20 [mask] [link]

Implement a state-space controller [A0w1 %2],Blv1 42, Clw1,v2)0 (1 %2]]
in a zelf-conditioned form. |f u_meaz = u_dem, then the implemented
contraller is [4.8.C.0] If u_meas iz imited. ... rate limiting, then the poles
of the controller become thoze defined in the mazk dialog box. Uses call
ta Contral Systems Toalbax funchion place. m when initializing. A, B C. and
[should be 4-D matrices, the last byo dimensions corresponding to the
zcheduling parameters, and the firgt bwo comezponding to the matrix for a
given zet of scheduling parameter values.

— Parameters
A-matrigv v 2]

A

B-matrisfv1,w2):
E
C-matrisfv],w2)
Ic
Dr-matris(1, w2):
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Initial ztate, =_initial:

o

Poles of Afv]-H[%]*Clv] = [wl ... wnk
[15-2]

Ok, I Cancel | Help Apply

A-matrix(vl,v2)
A-matrix of the state-space implementation. In the case of 2D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,;,1,1) = [1 0;0 1];.

3-39

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-40

B-matrix(vl,v2)
B-matrix of the state-space implementation. In the case of 2D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then B(:,:;,1,1) = [1 0;0 1];.

C-matrix(vl,v2)
C-matrix of the state-space implementation. In the case of 2D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then C(:,;,1,1) = [1 0;0 1];.

D-matrix(vl,v2)
D-matrix of the state-space implementation. In the case of 2D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of vl and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter, v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

2D Self-Conditioned [A(v),B(v),C(v),D(Vv)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

Ifthe scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-41

3D Controller [A(v),B(v),C(v),D(v)]

Purpose

Library

Description

W
wl

w2
w3

3-42

Implement a gain-scheduled state-space controller depending on three
scheduling parameters

GNC/Controls

The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

x= A(v)x+B(v)y
u= C(v)x +D(v)y
where v is a vector of parameters over which A, B, C, and D are defined. This

type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

3D Controller [A(v),B(v),C(v),D(v)]

Dialog Box

|

Block Parameters: 3D Controller [A{y),B{x),C(|
— StateSpacetBCD-30 [mask] (link]

Implement a state-space controller [4,B C.0] where &, B, C, and D
depend on three scheduling parameters, «1, w2, and 3.

— Parameters
A-matriglv1 v 2 4+ 3):

A
B-matris[+] v2 »3):
B
C-matrisfv] w2 w3
Ic
Dr-matris(s 1, w2 43):
D

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Third zcheduling wariable (3] breakpoints:

|v3_vec

Initial ztate, =_initial:

o

Ok, I Cancel | Help Apply

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,;,1,1,1)=[100;010; 0 0 1];.

B-matrix(vl,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,

the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix

3-43

3D Controller [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

3-44

corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(vl,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,;,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

The first input is the measurements.

The second, third and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

3D Controller [A(v),B(v),C(v),D(v)]
|

Assumptions If the scheduling parameter input to the block goes out of range, then it is
and Limitations clipped; i.e., the state-space matrices are not interpolated out of range.
See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-45

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Purpose

Library

Description

w-y_dem

wl

w2 u_dem
w3

U_meas

3-46

Implement a gain-scheduled state-space controller in an observer form
depending on three scheduling parameters

GNC/Controls

The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

= (A() +H@)C(v)x+ B0 * HO)Y =Y gom)
Ugem= F(v)x
The main application of this block is to implement a controller designed using

H-infinity loop-shaping, one of the design methods supported by the
p -Analysis and Synthesis Toolbox.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Dialog Box

Block Parameters: 3D Observer Form [A{v¥), .: |

— StateSpacetBCFH-3D [mask] (link)

Implement a state-space controller [4,B C.F H] in obzerver form where &,
B.C.F. and H depend on three scheduling parameters.

— Parameters
A-matriglv1 v 2 4+ 3):

A
B-matris[+] v2 »3):
B
C-matrisfv] w2 w3
Ic
F-mnatris{«1 %2 +3]:
|F
H-matris(1 w2 43):
|

First zcheduling wariable [+1] breakpoints:

|v1_vec

Second zcheduling wariable (2] breakpoints:

|v2_vec

Third zcheduling wariable (3] breakpoints:

|v3_vec

Initial ztate, =_initial:

o

Ok, I Cancel | Help Apply

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(vl,v2,v3)

B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to

|

3-47

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-48

scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(vl,v2,v3)
State-feedback matrix. In the case of 3D scheduling, the F-matrix should
have five dimensions, the last three corresponding to scheduling variables
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the
first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(vl,v2,v3)
observer (output injection) matrix. In the case of 3D scheduling, the
H-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

The first input is the set-point error.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is measured actuator position.
The output is the actuator demands.

Ifthe scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

1D Controller [A(v),B(v),C(v),D(¥)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-49

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Purpose
Library

Description

v
wi

wi u_dem
w3
u_meas

3-50

Implement a gain-scheduled state-space controller in a self-conditioned form
GNC/Controls

The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

x= A(v)x +B(v)y
u= C(v)x +D(v)y

in the self-conditioned form

2= (A(v)-H@)C(v))z + (B(v)-H()D(v))e+ H(v)u

meas

Ugem= C(v)z+D(v)e

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. These blocks implement a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Dialog Box

|

Block Parameters: 3D Self-Conditioned [A{¥), |
— StateSpaceSelfCond-30 [mask] [link]

Implement a state-space controller

Al w2 w3) Bl w2 w3 Ol w2 w3). 001w 2,03]] i a zelf-conditioned
form. If u_meas = u_dem, then the implemented contraller is [&.8.C.07. IF
u_meas iz limited, &.g., rate limiting, then the poles of the controller
become those defined in the mask dialog box. Uses call to Control
Systems Toolbox function place.m when initializing. &, B, C, and D should
be 5-D matrices, the last three dimenzions corezponding to the
scheduling parameters, and the first bwo comesponding to the matrix for &
given zet of scheduling parameter values.,

— Parameters
A-mnatrial w2 3]

A
B-matrix[v1 w2 3):
|B
C-matriz(v1 w2 3):
IC
Dr-rnatris(v1 w2 v 3]
D

First zcheduling wariable [+1] breakpaints:

Iv'l_vec

Second scheduling wariable (2] breakpaints:

|v2_vec

Third zcheduling wariable [+3) breakpaints:

|v3_vec

Initial state, »_initial:

|0

Pales of Alv]-H[%)Clv] = [wl ... wnl
[15-2]

Ok, I Cancel | Help Apply

A-matrix(vl,v2,v3)
A-matrix of the state-space implementation. In the case of 3D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:;,1,1,1) = [1 0;0 1];.

3-51

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3-52

B-matrix(vl,v2,v3)
B-matrix of the state-space implementation. In the case of 3D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.
C-matrix(vl,v2,v3)
C-matrix of the state-space implementation. In the case of 3D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.
D-matrix(vl,v2,v3)
D-matrix of the state-space implementation. In the case of 3D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.
First scheduling variable (vl) breakpoints

Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints

Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints

Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.
The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

Ifthe scheduling parameter inputs to the block goes out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3-53

3DoF Animation

Purpose
Library

Description

Dialog Box

3-54

Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object
Animation

The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Block Parameters: 3DoF Animation #
— D aF_Animation [mazk)] (link)

Create a 3-0' animated view of a three-degrees-of-freedom craft and its
target, where ¥ and £ target position [T argetPos). # and £ craft position
[<eZe), and craft attitude are inputs.

Dizplay parameters are in the zame units of lehath az the input parameters.

— Parameters
Aues limits [Krnin xmas ymin ymax 2min zmas:

|[D 5000 -2000 2000 -5050 -3050]

Tire interval between updates:
|05

Size of craft dizplayed:
j1.0

Enter view: IFiHBd position j
Fozition of camera [«c yo zc]:

|[2EIDD 500 -3150]

Yiew angle:

|1n

¥ Enable animation

Ok, I Cancel Help Apply

3DoF Animation

Inputs

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are
=Fixed position
=Cockpit
=Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

The first input is a vector containing the altitude and the downrange position
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

3-55

3DoF Animation

Examples See the aero_guidance demo for an example of this block.

See Also 6DoF Animation

3-56

3DoF (Body Axes)

Purpose
Library
Description
8 (rmd)
F, M)
® =, (rmdis)
dea folt (raclic]
F i)
¥ Z, ()
U, w (=)
1 (M-r)
A,k imi)

Implement three-degrees-of-freedom equations of motion
Equations of Motion/3DoF
The 3DoF (Body Axes) block considers the rotation in the vertical plane of a

body-fixed coordinate frame about an Earth-fixed reference frame.

xb,U\q

Body fixed
coordinate

,
Incidence = .
frame k

Earth fixed |
reference frame’

Ze

The equations of motion are

uw=-<—qw-gsind
m

w = —Z2+qu+gcosh
m

q=£
I,
6 =gq

where the applied forces are assumed to act at the center of gravity of the body.

3-57

3DoF (Body Axes)

Dialog Box

3-58

—3DoF Eokd [mask] [link]

lock Parameters: 3DoF {Body Axes)

2|

Integrate the three-degrees-of-freedom equations of motion to determine body position,
velocity, attitude, and related values.

el

Units: [Metric (MKS) =
Mazs type: |Fixed LI
Initial welocity:

J100

Initial body attitude:
Jo

Initial incidence:

Jo

Initial body ratation rate:

Jo

Initial position [« 2]:

[T

Initial mass:
1.0

Inertia:
1.0

Gravity source: | Extemnal LI

Ok Lancel Help | Apply

3DoF (Body Axes)

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(Velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of

motion.

Initial velocity

A scalar value for the initial velocity of the body, (V).

Initial body attitude

A scalar value for the initial pitch attitude of the body, (6,).

Initial incidence

A scalar value for the initial angle between the velocity vector and the body,

(ag) -

3-59

3DoF (Body Axes)

Inputs and
Outputs

3-60

Initial body rotation rate
A scalar value for the initial body rotation rate, (gy).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:
External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the body x-axis, (F).
The second input to the block is the force acting along the body z-axis, (F,).
The third input to the block is the applied pitch moment, (M).
The fourth optional input to the block is gravity in the selected units.
The first output from the block is the pitch attitude, in radians (0).
The second output is the pitch angular rate, in radians per second (g).

The third output is the pitch angular acceleration, in radians per second
squared (q).

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

3DoF (Body Axes)
|

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

Examples See the aero_guidance demo for an example of this block.

See Also Custom Variable Mass 3DoF (Body Axes)
Incidence & Airspeed
Simple Variable Mass 3DoF (Body Axes)

3-61

3x3 Cross Product

Purpose
Library

Description

A SmEs

Fodust
B C=AxE

T

Dialog Box

Inputs and
Outputs

3-62

Calculate the cross product of two 3-by-1 vectors
Utilities/Math Operations

The 3x3 Cross Product block computes cross (or vector) product of two vectors,
A and B, by generating a third vector, C, in a direction normal to the plane
containing A and B, and with magnitude equal to the product of the lengths of
A and B multiplied by the sine of the angle between them. The direction of C is
that in which a right-handed screw would move in turning from A to B.

A = aji+agj +agk
B = bi+bgj+b3k

i jk
C=AxB=|a;aq9ag

= (agbg—agby)i+(agb;—a bg)j+(abg—aysb)k

«): Block Parameters: 3x3 Cross Product 2=l

Calculate the crozz product of bwo 3-by-1 vectors.

"CIDSSPIDduCl [mazk] [link]

LCancel Help Apply

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

6DoF Animation

Purpose
Library

Description

R

By

Dialog Box

|

Create a 3-D Handle Graphics animation of a six-degrees-of-freedom object
Animation

The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Block Parameters: 6DoF Animation |
— EDaF_Animation [mazk) (link)

Create a 3-D animated view of a six-degrees-of-freedom craft, where .,
and Z craft position [Pozition] and craft Euler angles [E uler] are inputs.

Digplay parameters are in the same unitz of length az the input parameters.

— Parameters
Ases limits [krnin xmax ymin ymasx zmin zmasx]:

|[D 4000 -2000 2000 -5000 -3000]

Time interval between updates:

|0.1

Size of craft dizplayed:
j1.0

Static object position [p yp zp]:
J[4000 0 -5000]

Enter view: IFi:-ted position j
Fosition of camera [#c yo zcl:

|[EDDD 500-3150]

View angle:

|‘IIJ

v Enable animation

(] 4 I Cancel Help Apply

3-63

6DoF Animation

Inputs

See Also

3-64

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position
Specifies the altitude, the cross-range position, and the downrange position
of the target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are
=Fixed position
=Cockpit
=Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation

When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

The first input is a vector containing the altitude, the cross-range position, and
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

3DoF Animation

6DoF (Euler Angles)

Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion
Library Equations of Motion/6DoF
Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate
vma} frame (X, Yy, Z,) about an Earth-fixed reference frame (X,,Y,,Z,). The
S e, XF::: origin of the body-fixed coordinate frame is the center of gravity of the body,

b and the body is assumed to be rigid, an assumption that eliminates the need to
" consider the forces acting between individual elements of mass. The

maer = "0 Earth-fixed reference frame is considered inertial, a simplification that allows
%" the forces due to the Earth’s motion relative to a star-fixed reference system to
be neglected.
Center of
gravity Yb
0 ub
/
/
/
/
- > Xe
Yb Ib
vb wh
Ye
Le

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, Fz]T are in the body-fixed frame, and the mass

of the body m is assumed constant.
F

X

Fy= |F | = m(V,+oxV,)
FZ

3-65

6DoF (Euler Angles)

3-66

yb= Ub,@= q

wy, r
The rotational dynamics of the body-fixed frame are given below, where the

applied moments are [L M NIT, and the inertia tensor I is with respect to the
origin O.

L

Mp= M| = Io+ox(I)
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz

_sz _Izy Izz
The relationship between the body-fixed angular velocity vector, [p q 1T, and
the rate of change of the Euler angles, [¢ 6y 1T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

p ol |10 0 0 (10 0 cos9 0 —sinb| |0) ¢
q| =10/ % |0 cos¢ sind||[6] |0 cosp sing||0 10 0/=J |
r 0 0 —sin¢ cos¢| [0 0 —sin¢ cos¢||[sin® O cosO ||y v

Inverting J then gives the required relationship to determine the Euler rate
vector.

1 (sin¢tan®) (cosptand)

¢

=g _ |0 cosd —sin¢ P
0| =~ “\q| ~ . q
) - sin ¢ coso -
v cos6 cos6

6DoF (Euler Angles)

Dialog Box

Block Parameters: 6DoF (Euler Angles) |
— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters

U rits: | etric MES]

Mass type: | Fixed

Fepresentation: I Euler Angles

Iritial positian in inertial axes [$e e el

Lef Le] Le

[mom

Iritial velocity in bady ases [v w]:

[mom

Iritial Euler orientation [rall, pitch, waw]:

[mom

Initial body ratation rates [p.a.r:

[mom

Initial mass:

1.0

Inertia:

|eye[3]

o]

Cancel Help Apply

Units
Specifies the input and output units:

Metric
(MKS)

English
(Velocity
in ft/s)

English
(Velocity
in kts)

Forces

Newton

Pound

Pound

Moment Acceleration Velocity Position

Newton Meters per Meters Meters

meter second per
squared second
Foot Feet per Feet per Feet
pound second second
squared

Foot Feet per Knots Feet
pound second
squared

Mass

Kilogram

Slug

Slug

|

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

3-67

6DoF (Euler Angles)

Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

Mass Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

3-68

6DoF (Euler Angles)

Inputs and
Outputs

Assumptions
and Limitations

Examples

References

Initial Mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix I .

The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

See the aeroblk six_dof demo and Airframe in the aeroblk HL20 demo for
examples of this block.

Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

3-69

6DoF (Euler Angles)

See Also

3-70

6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

6DoF (Quaternion)

Purpose
o
Library
o a0
Description
v mis)
Foe M) cuse oo
e 0w ted)
(o]
v, mis)
Fn::; & (rdis)
M M0 dealdlt
Ay i)

Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should ¢
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

do d3 499 41 I
q.1=l 95 93 —qol|P +Ke |11
P 2|-q1 a9 a3 z d9
ds ~q0 ~91 92 d3

2 2 2 2
e=1-(qy +q; +q3 +q4)

3-71

6DoF (Quaternion)

Dialog Box

3-72

Block Parameters: 6DoF {Quaternion)

— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters

U rits: | etric MES]

Mass type: | Fixed

Fiepresentation: I Fuaternion

Iritial positian in inertial axes [$e Yele]

Lef Le] Le

[mom

Iritial velocity in bady ases [v w]:

[mom

Iritial Euler orientation [rall, pitch, waw]:

[mom

Initial body ratation rates [p.a.r:

[mom

Initial mass:

1.0

Inertia:

|eye[3]

Gain for guaternion normalization:

1.0

(]9 I Cancel

Help

Apply

6DoF (Quaternion)

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass Inertia
Metric Newton Newton Meters per Meters Meters Kilogram Kilogram
(MKS) meter second per meter
squared second squared
English Pound Foot Feet per Feet per Feet Slug Slug foot
(velocity pound second second squared
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug Slug foot
(Velocity pound second squared
in kts) squared
Mass Type

Select the type of mass to use:

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Fixed selection conforms to the previously described equations of

motion.

Representation

Select the representation to use:

Mass Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations
of motion.

3-73

6DoF (Quaternion)

Inputs and
Outputs

3-74

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial Mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix 1.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

6DoF (Quaternion)

Assumptions
and Limitations

References

See Also

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in

body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

6DoF (Euler Angles)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

3-75

Acceleration Conversion

Purpose Convert from acceleration units to desired acceleration units
Library Utilities/Unit Conversions
Description The Acceleration Conversion block computes the conversion factor from

specified input acceleration units to specified output acceleration units and
applies the conversion factor to the input signal.

e

it

The Acceleration Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Block Parameters: Acceleration Conversion #

r—Acceleration Conversion [mask) [link]

Convert units of input signal to desired output units.

— Parameters

Initial nits: | frig™2

Lef Lo

Final units: I mis”" 2

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s? Meters per second squared
ft/s? Feet per second squared

km/s2 Kilometers per second squared
in/s? Inches per second squared
km/h-s Kilometers per hour per second
mph-s Miles per hour per second

3-76

Acceleration Conversion

Inputs and
Outputs

See Also

The input is acceleration in initial acceleration units.

The output is acceleration in final acceleration units.

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

3-77

Adjoint of 3x3 Matrix

Purpose Compute the adjoint matrix for the input matrix
Library Utilities/Math Operations
Description The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input
_ matrix.
adjia) L
Eae) The input matrix has the form of
All A12 A13
A=Ay Agy Agg
A31 A32 A33

The adjoint of the matrix has the form of
My My Myg
adj(A) = My Moy Moy
Mgy Mgy Mg

where

i+j
Mij = (-1)

Dialog Box
Block Parameters: Adjoint of 3x3 Matrix |

".t’-‘«dioint of 33 matrix [mazk] [link)]

Compute the adjoint matrix for the input matris,

Ok I Cancel | Help | Apply

Inputs and The input is a 3-by-3 matrix.

Outputs The output of the block is 3-by-3 adjoint matrix of input matrix.

3-78

Adjoint of 3x3 Matrix
|

See Also Create 3x3 Matrix
Determinant of 3x3 Matrix

Invert 3x3 Matrix

3-79

Aerodynamic Forces and Moments

Purpose

Library

Description

Tear
CG
CF

Coefficients

hd

=

=

Dialog Box

3-80

Compute the aerodynamic forces and moments using the aerodynamic
coefficients, dynamic pressure, center of gravity, and center of pressure.

Aerodynamics

The Aerodynamic Forces and Moments block computes the aerodynamic forces
and moments about the center of gravity.

- J: Block Parameters: Aerodynamic Forces and Mol x|

—Aerodynamic Forces and Moments [mask) (ink)

Compute the aerodynamic forces and moments applied at the center of gravity using the
aerodynamic coefficients, dynamic pressure, center of gravity and center of pressure

P
F

Reference area
[1

Reference span;
[1

Reference length:

J1

oK LCancel Help Apply

Reference area

Specifies the reference area for calculating aerodynamic forces and
moments.

Reference span
Specifies the reference span for calculating aerodynamic moments in
x-axes and z-axes.

Reference length

Specifies the reference length for calculating aerodynamic moment in the
y-axes.

Aerodynamic Forces and Moments

Inputs and
Outputs

Examples

See Also

The first input is aerodynamic coefficients (in body axes) for forces and
moments.

The second input is the dynamic pressure.
The third input is the center of gravity.
The fourth input is the center of pressure.

The first output of the block is aerodynamic forces at the center of gravity in
x-axes, y-axes and z-axes.

The second output of the block is aerodynamic moments at the center of gravity
in x-axes, y-axes and z-axes.

See Airframe in the aeroblk_HL20 demo for an example of this block.

Dynamic Pressure
Estimate Center of Gravity
Moments About CG Due to Forces

3-81

Angle Conversion

Purpose
Library

Description

dig —* =d

Dialog Box

Inputs and
Outputs

3-82

Convert from angle units to desired angle units

Utilities/Unit Conversions

The Angle Conversion block computes the conversion factor from specified
input angle units to specified output angle units and applies the conversion

factor to the input signal.

The Angle Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Block Parameters: Angle Conv¥ersion

—&ngle Conversion [mask] [link]

Convert units of input signal to desired output units.

— Parameters

Iritial units: Ideg

=
Final units: I[ad j

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg Degrees
rad Radians
rev Revolutions

The input is angle in initial angle units.

The output is angle in final angle units.

Angle Conversion

See Also Acceleration Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

3-83

Angular Acceleration Conversion

Purpose
Library

Description

T

degis® —* mdis”

Dialog Box

Inputs and
Outputs

3-84

Convert from angular acceleration units to desired angular acceleration units

Utilities/Unit Conversions

The Angular Acceleration Conversion block computes the conversion factor
from specified input angular acceleration units to specified output angular
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output

units selected from the Initial units and the

Final units pop-up menus.

Block Parameters: Angular Acceleration Cor E|
—Angular Acceleration Conversion [mask] [link]
Convert units of input signal to desired output units.
r— Parameters
Initial units: [deq/s"2 |
Final units: Irada’s'\2 j
(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:
deg/s? Degrees per second squared
rad/s? Radians per second squared
rpm/s Revolutions per minute per second

The input is angular acceleration in initial angular acceleration units.

The output is angular acceleration in final angular acceleration units.

Angular Acceleration Conversion

See Also Acceleration Conversion
Angle Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

3-85

Angular Velocity Conversion

Purpose
Library

Description

deglz —* @disp

Dialog Box

Inputs and
Outputs

3-86

Convert from angular velocity units to desired angular velocity units
Utilities/Unit Conversions

The Angular Velocity Conversion block computes the conversion factor from
specified input angular velocity units to specified output angular velocity units
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output
units selected from the Initial units and the Final units pop-up menus.

Block Parameters: Angular ¥elocity Eunvé: |

r—&ngular Velocity Conversion [mask] [link]

Convert units of input signal to desired output units.

— Parameters

Initial nits: Ideg.-"s

Lef Lo

Final units: I radds

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

deg/s Degrees per second
rad/s Radians per second
rpm Revolutions per minute

The input is angular velocity in initial angular velocity units.

The output is angular velocity in final angular velocity units.

Angular Velocity Conversion

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion
Temperature Conversion

Velocity Conversion

3-87

Calculate Range

Purpose
Library

Description

Fatp

Dialog Box

Inputs and
Outputs

Limitation

3-88

Calculate the range between two crafts given their respective positions.

GNC/Guidance

The Calculate Range block computes the range between two crafts. The

equation used for the range calculation is

2 2 2
Range = J(xl—xz) +(V1-Y9) +(21-29)

Block Parameters: Calculate Range

Calculate range between craft 2 and craft 1 given their rezpective

" Calculate Range [maszk] [link]

positions. Range iz alway: pozsitive.

]

Cancel | Help

| Apply

The first input is the (x, y and z) position of craft 1.

The second input is the (x, y and z) position of craft 2.

The output is the range from craft 2 and craft 1.

The calculated range is give the magnitude of the distance but not the direction

therefore it is always positive.

Craft positions are real values.

COESA Atmosphere Model

Purpose

Library

Description

b ()

Tk
a [mis)

Ed—

coEsa T IFE
p thairy

Dialog Box

Implement the 1976 COESA lower atmosphere
Environment/Atmosphere

The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) United States standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

Below 32000 meters (approximately 104987 feet), the U.S. Standard
Atmosphere is identical with the Standard Atmosphere of the International
Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units
selected from the Units pop-up menu.

Block Parameters: COESA Atmosphere Mo #

—Atmosphere Model [mazk) (link]

Calculate various atmosphere models including 1976 COESA-extended
.5, Standard Atmosphere, MIL-HDEK-310, and MIL-STD-210C. Given
geopotential altitude, calculate absolute temperature, pressure and density
uzing standard interpolation formulas.

The COESA model extrapolates temperature linearly and pressure/density
logarithmic:ally beyond the range

0 <= altitude <= 84852 meters [geopatential]

The MIL specifications are not extrapolated beyond their defined altitudes
which are typically

0 <= altitude <= 80000 meters [geometric]

Depending on the given information either density or pressure is
calculated using a perfect gas relationship.

The unit spstem zelected applies to both input and outputs.

.
F

Uriits: | Metric (MKS) j

Specification: |1976 COESA-sstended LS. Standard Atmosphere 7 |

Action for out of range input: I\.\.-'aming j

QK | Cancel | Help I Apply |

3-89

COESA Atmosphere Model

Units
Specifies the input and output units:

Height Temperature Speed of Air Pressure Air Density

Sound
Metric Meters Degrees Meters per Pascal Kilograms
(MKS) Kelvin second per cubic

meter

English Feet Degrees Feet per Pound-force Slug per
(Velocity Rankine second per square cubic foot
in ft/s) inch
English Feet Degrees Knots Pound-force Slug per
(Velocity Rankine per square cubic foot
in kts) inch
Specification

Specify the atmosphere model type from one of the following atmosphere
models. The default is 1976 COESA-extended U.S. Standard Atmosphere.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and The input is geopotential height.

Outputs . :
The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions Below the geopotential altitude of 0 m (0 feet) and above the geopotential

and Limitations altitude of 84852 m (approximately 278386 feet), temperature values are

3-90

COESA Atmosphere Model
|

extrapolated linearly and pressure values are extrapolated logarithmically.
Density and speed of sound are calculated using a perfect gas relationship.

Examples See the aeroblk_calibrated model, the aeroblk_indicated model, and
Airframe in the aeroblk_HL20 demo for examples of this block.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also ISA Atmosphere Model
Non-Standard Day 210C
Non-Standard Day 310

3-91

Create 3x3 Matrix

Purpose
Library

Description

o
BREEREasZ

Dialog Box

Inputs and
Outputs

3-92

Create a 3-by-3 matrix from nine input values.
Utilities/Math Operations

The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values
where each input corresponds to an element of the matrix.

The output matrix has the form of

All A12 A13

A=Ay Agy Agg

A31 A32 A33
Im:k Parameters: Create 343 Matrix k|

Create 33 Matrix [mazk] [link)

Create a 3-by-3 matrix from nine input walues. Each input cormesponds to
ah element of the matrix.

For example, the input labeled 427 is the entry in the second rovw and first
columnn of the matris.

Cancel | Help | Apply |

The first input is the entry of the first row and first column of the matrix.

The second input is the entry of the first row and second column of the matrix.
The third input is the entry of the first row and third column of the matrix.
The fourth input is the entry of the second row and first column of the matrix.
The fifth input is the entry of the second row and second column of the matrix.
The sixth input is the entry of the second row and third column of the matrix.
The seventh input is the entry of the third row and first column of the matrix.
The eighth input is the entry of the third row and second column of the matrix.
The ninth input is the entry of the third row and third column of the matrix.
The output of the block is a 3-by-3 matrix.

Create 3x3 Matrix

See Also Adjoint of 3x3 Matrix
Determinant of 3x3 Matrix
Invert 3x3 Matrix

Symmetric Inertia Tensor

3-93

Custom Variable Mass 3DoF (Body Axes)

Purpose
Library

Description

F,
F, M

it (kgis)
m kg)

dlidt fkg-mis)
1 fag-riy

a (i)

M=

8 (=)
@ jredis)

W (M-l Gustom Varisble ¥

dajdt
% Z, (m)
Uw (i)
AR (s

3-94

Implement three-degrees-of-freedom equations of motion
Equations of Motion/3DoF

The Custom Variable Mass 3DoF (Body Axes) block considers the rotation in

the vertical plane of a body-fixed coordinate frame about an Earth-fixed
reference frame.

xb,U\q

Body fixed
coordinate

,
Incidence = .
frame k

Earth fixed |
reference frame’

Ze

The equations of motion are

F
po=—x_mU_ qw-gsin®
m m
F
w = =2-"% 4 qu+gcosbd
m m
__M—Iyyq
=77
¥y
0=gq

Custom Variable Mass 3DoF (Body Axes)

|

where the applied forces are assumed to act at the center of gravity of the body.

Dialog Box

«): Block Parameters: Custom Yariable Mass 3DoF (Bod e

—30oF Eok [mask] [link]

Integrate the three-dearees-of-freedom equations of motion to determing body paosition,
velocity, attitude, and related values.

—Parameter
Urnits: [Metric (MKS) ||
tazs type: I Cuztom % ariable ﬂ
Imitial welocity:
j100

Iritial body attibude:
jo

Initial incidence:
jo

Iritial body ratation rate:

jo

Iritial position [x 2):
[T

Gravity zource: I Extemal ﬂ

kK LCancel Help | Apply |

3-95

Custom Variable Mass 3DoF (Body Axes)

3-96

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(Velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described

equations of motion.

Initial velocity

A scalar value for the initial velocity of the body, (V).

Initial body attitude

A scalar value for the initial pitch attitude of the body, (8,)) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body,

(ao) .

Initial body rotation rate

Custom Variable Mass 3DoF (Body Axes)

Inputs and
Outputs

A scalar value for the initial body rotation rate, (q().

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the body x-axis, (F,).
The second input to the block is the force acting along the body z-axis, (F,) .
The third input to the block is the applied pitch moment, (M).
The fourth input to the block is the rate of change of mass, (m).
The fifth input to the block is the mass, (m).
The sixth input to the block is the rate of change of inertia tensor matrix, (I y'y) .
The seventh input to the block is the inertia tensor matrix, (Iyy).
The eighth optional input to the block is gravity in the selected units.
The first output from the block is the pitch attitude, in radians (0).

The second output is the pitch angular rate, in radians per second (g).

The third output is the pitch angular acceleration, in radians per second
squared (g).

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

3-97

Custom Variable Mass 3DoF (Body Axes)

See Also

3-98

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

3DoF (Body Axes)
Incidence & Airspeed
Simple Variable Mass 3DoF (Body Axes)

Custom Variable Mass 6DoF (Euler Angles)

Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF (Euler Angles) block considers the rotation of
e 0 ¥ iz a body-fixed coordinate frame (X, Y,, Z,) about an Earth-fixed reference
Mol ke M"ﬂ frame (X,,Y,, Z,). The origin of the body-fixed coordinate frame is the center
i gt b of gravity of the body, and the body is assumed to be rigid, an assumption that
L :t;:: eliminates the need to consider the forces acting between individual elements
ittt okt of mass. The Earth-fixed reference frame is considered inertial, a simplification
il il that allows the forces due to the Earth’s motion relative to a star-fixed

reference system to be neglected.

Center of
gravity Xb
0 ub
/
/
/
/
- > Xe
Yh Ih
vb wh

Ye
Ie

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, FZ]T are in the body-fixed frame.

Eb= Fy = m(Yb+meb)+me

3-99

Custom Variable Mass 6DoF (Euler Angles)

p
_b = vb 9(0 - q
Wy, r

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor I is with respect to the

origin O.
L
My= M| = Io+ox(o)+Io
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz
I I 1

zx Tzy “zz

Ia.cx _Ia.cy _Ixz

I' — _ . . _ .
Iyx Iyy Iyz

I, I I

zx " Tzy “zz |

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, [$ 0y 1T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

b 10 0 0 10 0 cosO 0 —sind||0

p ¢
1
q| =10/ % |0 cosd¢ sin¢||[6] T |0 cosdp sing[|0 10 0/=J |
r 0 0 —sin¢ cosd| |0 0 —sin¢ cos¢|[sin® O cosO ||y "

Inverting J then gives the required relationship to determine the Euler rate
vector.

3-100

Custom Variable Mass 6DoF (Euler Angles)
|

1 (sin¢ptan0O) (cosdptan6d
b [|1 (sindtan6) (cosotano)
N _ |0 cosd —sin¢
0 q . q
sin ¢ cos ¢ -
4 cos0 cos0
Dialog Box
=

— EDoF Eotd [Body dwis] [mazk] [link]

Integrate the sis-degrees-of-freedom equations of mation wsing an Euler
angle representation for the orientation of the body in space.

— Par.
Urits: | Metric [MKS)

Mass type: IEustom Wariable

Lef Lel Lo

Representation: | Euler Aingles

Initial position in inertial axes [<eYeZe]:
finom

Initial velocity in bady axes [v w]:
finom

Initial Euler orientation [roll, pitch, paw]:
finom

Initial body ratation rates [pog.rf:
finom

kK I Cancel Help Anply

3-101

Custom Variable Mass 6DoF (Euler Angles)

3-102

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(Velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Custom Variable selection conforms to the previously described

equations of motion.

Representation

Select the representation to use:

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations

of motion.

Custom Variable Mass 6DoF (Euler Angles)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians

per second.
The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.
The third input is a scalar containing the rate of change of mass.
The fourth input is a scalar containing the mass
The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.
The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

3-103

Custom Variable Mass 6DoF (Euler Angles)

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in

body-fixed axes.

Assumptions The block assumes that the applied forces are acting at the center of gravity of
and Limitations the body.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)
6DoF (Quaternion)

Custom Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

3-104

Custom Variable Mass 6DoF (Quaternion)

Purpose

Library

Description

Fae M)

W (-

1/t (hg-mits)

I fleg-rey

Quatemion

dmidt (gl
m {kg)

Gustom Vaiable g oy

hizss

LR
¥, tmh
8w i=d)
==

i, (wis)

deaidt

A, i)

Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should ¢
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

4o d3 99 41 I
q; _1{92 493 99 +Ke |71
ds 2 41 90 93 z ds
d3 ~qp 91 42 qs

2 2 2 2
e=1-(qy +q1 +q3 +q4)

Custom Variable Mass 6DoF (Quaternion)

Dialog Box

Block Parameters: Custom Yariable Mass 6D

— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | etric MES]

Mass type: IEustom Variable

Lef Le] Le

Fiepresentation: I RFuaternion

Iritial positian in inertial axes [$e e el
[mom

Iritial velocity in bady ases [v w]:
[mom

Iritial Euler orientation [rall, pitch, waw]:
[mom

Initial body ratation rates [p.a.r:
[mom

Gain for guaternion normalization:

1.0

ak. I Cancel Help Apply

Units

Metric
(MKS)

Englis
(Veloc
in ft/

Englis

(Veloc
in kts

3-106

Specifies the input and output units:

Forces Moment Acceleration Velocity Position

Newton Newton Meters per Meters Meters

Feet

meter second per

squared second
h Pound Foot Feet per Feet per Feet
ity pound second second
s) squared
h Pound Foot Feet per Knots
ity pound second
) squared

Mass

Kilogram

Slug

Slug

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Custom Variable Mass 6DoF (Quaternion)

Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.
The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

Mass Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of
motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

3-107

Custom Variable Mass 6DoF (Quaternion)

Inputs and
Outputs

Assumptions
and Limitations

References

3-108

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.
The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in

body-fixed axes.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

Custom Variable Mass 6DoF (Quaternion)

See Also 6DoF (Euler Angles)
6DoF (Quaternion)
Custom Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Euler Angles)
Simple Variable Mass 6DoF (Quaternion)

3-109

Density Conversion

Purpose
Library

Description

lbrf —+ hgim

Dialog Box

Inputs and
Outputs

3-110

Convert from density units to desired density units

Utilities/Unit Conversions

The Density Conversion block computes the conversion factor from specified
input density units to specified output density units and applies the conversion

factor to the input signal.

The Density Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Block Parameters: Density Conversion

r— Density Conversion [mask] [link]

Convert units of input signal to desired output units.

— Parameters

Initial nits: ||bm;ft"3

Lef Lo

Final units: I kgdm™3

(] 4 | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm/ft3 Pound mass per cubic foot
kg/m3 Kilograms per cubic meter
slug/ft3 Slugs per cubic foot

1bm/in3 Pound mass per cubic inch

The input is density in initial density units.

The output is density in final density units.

Density Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

3-111

Determinant of 3x3 Matrix

Purpose Compute the determinant for the input matrix
Library Utilities/Math Operations
Description The Determinant of 3x3 Matrix block computes the determinant for the input
matrix.
peiatls The input matrix has the form of
323 e input matrix has the form o
All A12 A13
A=Ay Agy Agg
A3l A32 A33

The determinant of the matrix has the form of
det(A) = Ay1(AggAgg —Ag3Agy) ~Aqg(AgiAgs —AggAgy) +
Aq3(Ag1Agg—AgoAgy)

o
Dialog Box
Block Parameters: Determinant of 313 M3 |

" Deterrinant of 343 Matrix [maszk] (link)]

Compute the determinant of 353 matri=.

(] I Cancel | Help | Apply

Inputs and The input is a 3-by-3 matrix.

Outputs The output of the block is the determinant of input matrix.

See Also Adjoint of 3x3 Matrix
Create 3x3 Matrix

Invert 3x3 Matrix

3-112

Direction Cosine Matrix to Euler Angles

Purpose Convert direction cosine matrix to Euler angles
Library Utilities/Axes Transformations
Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix
— performs the coordinate transformation of a vector in inertial axes

(0x(, 0y, 02()) into a vector in body axes (0ox3, 0y3,0z3). The order of the axis
rotations required to bring (ox3, 0y, 0z5) into coincidence with (ox, 0y, 0z)
is first a rotation about ox4 through the roll angle (¢) to axes (oxq, 0y4, 025) .
Second a rotation about 0y, through the pitch angle (0) to axes (ox;,0y4,024),
and finally a rotation about 0z; through the yaw angle (y) to axes

(0x(, 0y, 02() -

ox3 oxo
o0yg| = DCM 0¥

024 0z

0x3 10 0 cosO 0 —sin6||cosy siny 0| |°%0
0y3| = |0 cos¢ sing||0 10 —siny cosy 0] |0y
0zg 0 —sin¢ cos¢||sind 0 cosO ||0 0 1 0z

Combining the three axis transformation matrices defines the following DCM.

cosOcosy cosOsiny —-sin 0
(sin¢sinOcosy — cosdpsiny) (sindpsinOsiny + cospcosy) sindcosO
(cosdsinBcosy + sindsiny) (cosdpsinOsiny — sinpcosy) cos¢pcosO

DCM =

To determine Euler angles from the DCM, the following equations are used:

_ DCM(2, 3)

¢ = atan(DCM(3,3

0 = asin(-DCM(1, 3))
_ DCM(1,2)

v o= atan(DCM(l, 1

3-113

Direction Cosine Matrix to Euler Angles

Dialog Box

Block Parameters: Direction Cosine Matrix |
DCMZE uler [magk] [link]

Determing an euler orentation [roll, pitch, yaw] from the 3-by-3 direction
cozine matrix [DCk). The input DCR transforms vectors from inertial axes
to body axes.

0K I Cancel | Help Lpply

Inputs and The input is a 3-by-3 direction cosine matrix.

Outputs The output is a 3-by-1 vector of Euler angles.

Assumptions This implementation generates a pitch angle that lies between +90 degrees,
and Limitations and roll and yaw angles that lie between +180 degrees.
See Also Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

3-114

Direction Cosine Matrix to Quaternions

Purpose
Library

Description

DeMZ2Quat

Dialog Box

Inputs and
Outputs

Convert direction cosine matrix to quaternion vector
Utilities/Axes Transformations

The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion vector
(ap,a1,92,a3)- The DCM performs the coordinate transformation of a vector in
inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

2 2 2 2
(99*+91-92-93) 2(q199+9¢43) 2(9195-90492)

— 2 2 2 2
DCM = 2(9199-9093) (990—91+92-93) 2(q2935+9¢q1)

2 2 2 2
2(‘11‘13"“10‘12) 2(Q2Q3‘Q0ql) (99-91-92+93)

Using this representation of the DCM, there is a number of calculations to
arrive at the correct quaternion. The first of these is to calculate the trace of
the DCM to determine which algorithms are used. If the trace is greater that
zero, the quaternion can be automatically calculated. When the trace is less
than or equal to zero, the major diagonal element of the DCM with the greatest
value must be identified to determine the final algorithm used to calculate the
quaternion. Once the major diagonal element is identified, the quaternion is
calculated. For a detailed view of these algorithms, look under the mask of this
block.

Block Parameters: Direction Cosine Makri |

DCM20uatermion [mazk) (link)

Determine the 41 gquatemion orentation vector from a 3-by-3 direction
cozine matrix [DCk). The input DCR transforms vectors from inertial axes
to body axes.

Ok, I Cancel | Help Apply

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

3-115

Direction Cosine Matrix to Quaternions

See Also Direction Cosine Matrix to Euler Angles
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

3-116

Discrete Wind Gust Model

Purpose
Library
Description

¥ i) Vg]

Diiscrete Gust

Generate discrete wind gust
Environment/Wind

The Discrete Wind Gust Model block implements a wind gust of the standard
“1-cosine” shape. This block implements the mathematical representation in
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis
individually, or to all three axes at once. The user specifies the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The
parameters that govern the gust shape are indicated on the diagram.

Gust Length

6l Gust Amplitude

Wind Speed (m/s)

Distance (m)

The discrete gust can be used singly or in multiples to assess airplane response
to large wind disturbances.

3-117

Discrete Wind Gust Model

The mathematical representation of the discrete gust is

Vwind = %(1—005(2;—36)) 0<x<d,,

where V,, is the gust amplitude, d,, is the gust length, x is the distance
traveled, and V,;, 4 is the resultant wind velocity in the body axis frame.

o
Dialog Box
Block Parameters: Discrete Wind Gust Model™ #

r— Digcrete Wind Gust Madel [maszk] [link)]

Generate a discrete wind gust. The gust profile takes the 1-cozing' form.

— Parameters
Units: [Metric (MK5) =

W Gustin u-axis

v Gust in v-axis

W Gust in w-axis

Gust start time [sec]:

|5

Gust length [dx dy dz] [m]:
|1120120 80

Gust amplitude [ug wg wa] [m/z):
|[3.5 3530

0K Cancel | Help I Lpply

3-118

Discrete Wind Gust Model

Inputs and
Outputs

Examples
References

See Also

Units

Define the units of wind gust.

Wind Altitude
Metric (MKS) Meters/second Meters
English (Velocity Feet/second Feet
in ft/s)
English (Velocity Knots Feet
in kts)

Gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (sec)
The model time, in seconds, at which the gust begins.

Gust length [dx dy dz] (m or f)

The length, in meters or feet (depending on the choice of units), over which
the gust builds up in each axis. These values must be positive.

Gust amplitude [ug vg wg] (m/s, f/s, or knots)

The magnitude of the increase in wind speed caused by the gust in each
axis. These values may be positive or negative.

The input is airspeed in units selected.

The output is wind speed in units selected.
See Airframe in the aeroblk_HL20 demo for an example of this block.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Dryden Wind Turbulence Model (Continuous), Wind Shear Model

3-119

Dryden Wind Turbulence Model (Continuous)

Purpose Generate continuous wind turbulence with the Dryden velocity spectra
Library Environment/Wind
Description The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
oy spectral representation to add turbulence to the aerospace model by passing
P band-limited white noise through appropriate forming filters. This block
pom R a3 implements the mathematical representation in the Military Specification

MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Q radians per meter, the circular
frequency o is calculated by multiplying V by Q. The following table displays
the component spectra functions:

MIL-F-8785C MIL-HDBK-1797
Longitudinal
2 2
2c, L 2c, L
CDu(O)) Sy u 1 uu 1
TCV ® 2 TCV O] 2
1+ (L,2) 1+ (L,2)
1 1
nl N3 2nL N3
2 _w 2 w
®, () Sw .0'8(i) Ow .0'8(i)
" Vi 1+(41’_@)2 2V, 1+(4—bw)2
VvV nV

3-120

Dryden Wind Turbulence Model (Continuous)

Lateral

()

@, (o)

Vertical

@, (0)

(o)

MIL-F-8785C

2 [0 2
o,L, 1+3(L,$)

nV

2
[1+(L,2)°]

2 ®
GwLw 1+3(wa_/
nV 02
[1+(L,]

MIL-HDBK-1797

2
26°L, 1+12(L,2)
v

2 2
[1+4(L,3)]

2
206,.°L, 1+12(L,2)
v

2 2
[1+4(L,2)"]

The variable b represents the aircraft wingspan. The variables L ,L ,L

represent the turbulence scale lengths. The variables ¢, 6, 5,, represent the

turbulence intensities.

3-121

Dryden Wind Turbulence Model (Continuous)

3-122

The spectral density definitions of turbulence angular rates are defined in the
specifications as three variations, which are displayed in the following table:

p - % q = % r = —%
g 6y g ox g ox
p = % awg r. = %
ow ow ov

- "8 =_—£ - _&
Pg = dy g ox e T o

The variations affect only the vertical (q) and lateral (ry) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, d>pg(co) ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

@, (»), multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

Vertical Lateral

O} q(co) -0, (o)

D (@) Do)

D (0) (o)

To generate a signal with the correct characteristics, a unit variance,

band-limited white noise signal is passed through forming filters. The forming
filters are derived from the spectral square roots of the spectrum equations.

Dryden Wind Turbulence Model (Continuous)

The following table displays the transfer functions:

MIL-F-8785C MIL-HDBK-1797
Longitudinal
2L 1 2L 1
u u
H SuN7v T L CuNnzv T L
u(®) ¢ V1+7"s ¢ 1+7"s

1/6 1/6
mo g @) GG
w VLw1/3(1+(@)S) NV L)1/3((%)S)

T

Lateral
2./3L
Hys) T 1+—ﬁLvs oL, 1ty s
T v
(1+VUS) (1+TS)
H,(s)
s _s
+ 5
— B ——— H,(5)
(1+(Zp)s) (1+(Z)s)
Vertical
H (s) J3L 2.3L,,
w 1+ w 1+ S
o lE % S o, 2[;0 Vv
WHN vV 2 n 2L
(1++7s) (1+———s)
Hq(s) s s
5 5

3-123

Dryden Wind Turbulence Model (Continuous)

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The military specifications result in the same transfer function after
evaluating the turbulence scale lengths. The differences in turbulence scale
lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low
altitudes, where 4 is the altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797

L,=h oL, = h

L,=L,= L — L,=2L,= h -
(0.177 +0.000823h) " (0.177 +0.000823h)"

The turbulence intensities are given below, where Wy, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

Ow

Oy _ 9y 1

Sw O (0.177 +0.0008234)"*

The turbulence axes orientation in this region is defined as follows:

* Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

* Vertical turbulence velocity, w,, aligned with vertical

3-124

Dryden Wind Turbulence Model (Continuous)

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

MIL-F-8785C MIL-HDBK-1797

L,=L,=L,=1750ft L,=2L,=2L, = 1750 f

u v u v

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

Gu=GU=Gw

3-125

Dryden Wind Turbulence Model (Continuous)

Dialog Box

3-126

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)
80 T T T T T

"Severe"
10°°

(53]
(=)
T

"Moderate"
102

w
o

Altitude, thousands of feet
.
(=]

N
(=)

10

| 1 1
10 15 20 25 30 35
RMS Turbulence Amplitude [ft/sec]

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean

horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Dryden Wind Turbulence Model (Continuous)

Block Parameters: Dryden Wind Turbulence Model (Continuous (+q +r))

21X

—'wind Turbulence Model [mask] (link]

Generate atmosphenc burbulence. White noise it passed through 4 filter to give the turbulence the specified velacity spectra,

Mediumshigh altitude scale lengths from the specifications are 762 m (2500 ft) for Yon Karman turbulence and 533.4 m [1750 it] for Divden tubulence.

Units: [Metric (MKS)

Specification: I IL-F-B785C

Model type: | Continuous Dryden [+g +)

‘Wind speed at B m defines the lov-altitude intensity [m/s]:

|15

‘Wind direction at 6 m (degrees clockwise from narth]:

Jo

Probability of exceedance of high-alitude intensity: | 102 - Light

Scale length at medium/high altitudes (m):

[5334

WWingspan [m]:

J10

Band limited noise sample time (sec):

Jo1

Noise seeds [ug vg wa pa

|[23341 23342 23343 23344]

¥ Tubulence on

oK Cancel

Help

Lpply

|

3-127

Dryden Wind Turbulence Model (Continuous)

3-128

Units
Define the units of wind speed due to the turbulence.

Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English Feet/second Feet Feet/second
(Velocity in
ft/s)
English Knots Feet Knots
(Velocity in
kts)
Specification

Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions.

Model type
Select the wind turbulence model to use.

Model Description

Continuous Von Kdrmén (+q -r) Use continuous representation of Von
Karmaén velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Karman (+q +r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von
Karman velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Continuous)

Model Description

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

The Continuous Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

3-129

Dryden Wind Turbulence Model (Continuous)

Inputs and
Outputs

3-130

Scale length at medium/high altitudes (m)
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (sec)
The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is altitude, in units selected.
The second input is aircraft speed, in units selected.
The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Continuous)

Assumptions
and Limitations

Examples

References

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

® Terrain roughness

® Lapse rate

¢ Wind shears

® Mean wind magnitude

¢ Other meteorological factions (except altitude)
See Airframe in the aeroblk_HL20 demo for an example of this block.

U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., “Gust Loads on Aircraft: Concepts and Applications,” ATAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, 1., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

3-131

Dryden Wind Turbulence Model (Continuous)

See Also

3-132

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARYV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

Von Karman Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Purpose
Library

Description

Diszrte

h im) Yiing IS
V (mis) ?

Dryden o . (m=dis)
oGm 40 s (23451

Generate continuous wind turbulence with the Dryden velocity spectra

Environment/Wind

The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral
representation to add turbulence to the aerospace model by using band-limited
white noise with appropriate digital filter finite difference equations. This

block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined

by velocity spectra. For an aircraft flying at a speed V through a “frozen”

turbulence field with a spatial frequency of Q radians per meter, the circular
frequency o is calculated by multiplying V by Q. The following table displays

the component spectra functions:

Longitudinal

@, (o)

(o)

MIL-F-8785C
20,L, 1
V14 @,2
1
nl ~\3
2 _w
o2 08(4b)
VL 4bw\ 2
1+ (W)

MIL-HDBK-1797

20, L, 1

WVo1e @,
1
2nl ~\3

2 w
2 o)
2VL 2
s

3-133

Dryden Wind Turbulence Model (Discrete)

MIL-F-8785C MIL-HDBK-1797
Lateral
2 o2 2 o2
o o,L, 1+3(L,p) 20,L, 1+12(L,9)
o(®) 1% 0 2.2 nV ®
[1+(L,2)] [1+4(L,2)]
2 2
_(® (®
D (o) +(V) +(x7)
g -0 (o) LD (0)
1+(317_Q))2 1 (317_(’3)2 ’
nV + nV
Vertical
2 0)2 26 2L 1+12(L, 2)°
O (0) o,L, 1+3(L,%) oply, 1+ (L,7)
v vV 2 2 nV K
T [1+ (L, [1+4(L,7)]
D (o) + x_/) * 17)
q — D, (0) — D (0)
1+(45_w)2 1+(@)2 N
nV nV

The variable b represents the aircraft wingspan. The variables L ,L ,L

represent the turbulence scale lengths. The variables ¢, 5, 5,, represent the
turbulence intensities.

3-134

Dryden Wind Turbulence Model (Discrete)

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

ow 6wg . 8vg

= _g‘ = —_— — ———
Pg Oy 9% = 5 g ox

ow ov
- e w, - g
Pg = dy 8 ox g Ox

The variations affect only the vertical (qy) and lateral (ry) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, (o),
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

@, (o), multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

Vertical Lateral
D (@) D (o)
O (@) ()
D (0) D (o)

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is used in the digital filter finite difference
equations.

3-135

Dryden Wind Turbulence Model (Discrete)

3-136

The following table displays the digital filter finite difference equations:

Longitudinal

g

Lateral

Vertical

qg

MIL-F-8785C

(128 s

ILb
095
, 2.6 T3«/2wa2)
\ JL,b oy

nV T
(1 - %T) rg+%(vg - vgpw)

\% lo V. mSw
1-—Tw, + |[2—T—n
(L,) g L, o, 3

nV b
(1 - ET) At We-wg)

(1

(1

1

MIL

-HDBK-1797

\4 o V Cu
1——T)ug+ 2L—uT€]T]1

2.6 T)pg +

L5

1.9
(e}
[26 2Ly "
N4
9L b On

nV _T
- %T) "e¥35 (Vs Vg,..)

4 V%
_LuT)wg ¥ /2LuTGnn3

_nv
4b

T
T) Aotz (We-wg)

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Dryden Wind Turbulence Model (Discrete)

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low
altitudes, where 4 is the altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797

L,=h oL, = h

L,=L,= h = L,=2L,= h =
(0.177 +0.000823h) ™ (0.177 +0.000823h)"

The turbulence intensities are given below, where W, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

G, = 0.1W,,

w

Oy Oy 1

Sw Ow (0.177 +0.000823h)%*

The turbulence axes orientation in this region is defined as follows:

* Longitudinal turbulence velocity, u,, aligned along the horizontal relative
mean wind vector

® Vertical turbulence velocity, W, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

3-137

Dryden Wind Turbulence Model (Discrete)

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

MIL-F-8785C MIL-HDBK-1797

L,=L,=L, =1750ft L,=2L,6 =2L, = 1750ft

u v u v

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

GM=GU=GLU

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)

80

70

\Q
"Severe"
108

ig4
"Moderate" 7
3

SLight'
1 -2
20

2% -1 //

—

0 5 10 15 20 25 30 35
RMS Turbulence Amplitude [ft/sec]

@
=]
T

o
=]

Altitude, thousands of feet
w B
o o
=

-

3-138

Dryden Wind Turbulence Model (Discrete)

Dialog Box

|

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000

feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

=): Block Parameters: Dryden Wind Turbulence Model (Discrete {+q +r))

2lx|

—Ywind Turbulence Model [mask] [link]

Generate atmospheric turbulence. White noise iz passed through a filter ta give the turbulence the specified velocity spectra.

Medium/high altitude gcale lengths from the specifications are 762 m (2500 f] for Von Karman turbulence and 533.4 m [1750 i) for Dipden tuibulence.

P
F

Urits: | Metric [MKS)

Specification: | MIL-F-8785C

M odel type: | Discrete Dryden [+q +]

Wind speed at B m defines the low-altitude intensity (m/z]:

|15

“Wind direction at 6 m [degrees clockwise fram narth]:

Jo

Probability of exceedance of high-altitude intensity: I 102 - Light

Scale length at medium/high altitudes [m):

[533.4

“Wingspan [m]:

[10

Band limited noize and discrete filter sample time [sec)

Jo1

Noise seeds [ug va wa pal:

|[23341 23342 23343 23344]

™ Tubulence on

ok LCancel Help Apply

3-139

Dryden Wind Turbulence Model (Discrete)

3-140

Units
Define the units of wind speed due to the turbulence.

Wind Velocity Altitude Air Speed
Metric (MKS) Meters/second Meters Meters/second
English Feet/second Feet Feet/second
(Velocity in
ft/s)
English Knots Feet Knots
(Velocity in
kts)
Specification

Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Model Description

Continuous Von Kdrmén (+q -r) Use continuous representation of Von
Karmaén velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Karman (+q +r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von
Karman velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Discrete)

Model Description

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

The Discrete Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

3-141

Dryden Wind Turbulence Model (Discrete)

Inputs and
Outputs

3-142

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise and discrete filter sample time (sec)

The sample time at which the unit variance white noise signal is generated
and at which the discrete filters are updated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is altitude, in units selected.
The second input is aircraft speed, in units selected.
The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Discrete)

Assumptions
and Limitations

References

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

® Terrain roughness

® Lapse rate

¢ Wind shears

® Mean wind magnitude

¢ Other meteorological factions (except altitude)

U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., “Gust Loads on Aircraft: Concepts and Applications,” ATAA
Education Series, 1988.

Ly, U,, Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

3-143

Dryden Wind Turbulence Model (Discrete)

See Also

3-144

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARYV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Dryden Wind Turbulence Model (Continuous)

Von Karman Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Dynamic Pressure

Purpose
Library

Description

W
1 2
by qk

3

Dialog Box

Inputs and

Outputs

Examples

See Also

Compute dynamic pressure using velocity and air density
Flight Parameters

The Dynamic Pressure block computes dynamic pressure.
Dynamic pressure is defined as

I
q = 5PV

where p is air density and V is velocity.

Block Parameters: Dynamic Pressure #

" Dwnamic Pressure [mask)] [link]

Compute dynamic pressure uzing velocity and air density.

QK I Cancel | Help | Apply |

The first input is velocity vector.
The second input is air density.

The output of the block is dynamic pressure.

See the Airframe subsystem in the aeroblk_HL20 demo for an example of this

block.

Aerodynamic Forces and Moments

Mach Number

3-145

Estimate Center of Gravity

Purpose
Library

Description

mass S

dmidt dGGdt

T

Dialog Box

3-146

Calculate the center of gravity location
Mass Properties
The Estimate Center of Gravity block calculates the center of gravity location

and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity as a
function of mass. The rate of change of center of gravity is a linear function of
rate of change of mass.

«): Block Parameters: Estimate Center of Gravity ﬂﬂ

—Estimate CG [mazk] [link]

Calculate the center of gravity location. Linear interpolation is uged to determine center
of gravity az a function of mazs.

=
F

Full mass:
|2

Emply mazs:

Jh

Full center of gravity:
o1y

Empty center of gravity:
Jinsas08;

Qg Lancel Help Apply

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full center of gravity
Specifies the center of gravity at gross mass of the craft.

Estimate Center of Gravity

Empty center of gravity
Specifies the center of gravity at empty mass of the craft.

Inputs and The first input is the mass.
Outputs The second input is the rate of change of mass.
The first output is the center of gravity location.

The second output is the rate of change of center of gravity location.

See Also Aerodynamic Forces and Moments
Estimate Inertia Tensor

Moments About CG Due to Forces

3-147

Estimate Inertia Tensor

Purpose Calculate the inertia tensor
Library Mass Properties
Description The Estimate Inertia Tensor block calculates the inertia tensor and the rate of
change of the inertia tensor.
Mass =k 1B
i i Linear interpolation is used to estimate the inertia tensor as a function of
b
' ' mass. The rate of change of the inertia tensor is a linear function of rate of

change of mass.

Dialog Box

«): Block Parameters: Estimate Inertia Tensor ﬂﬂ

—E stimate Inertia [mazk] [link]

Calculate the inertia tenzor. Linear interpolation is used to determine inertia tensor
as a function of mass.

Full mass:
|2

Emply mazs:
Jh
Full inertia ratrix:

|ey8[3]

Empty inertia matrix:

Jepeianz

Qg Lancel Help Apply

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full inertia matrix
Specifies the inertia tensor at gross mass of the craft.

3-148

Estimate Inertia Tensor

Empty inertia matrix
Specifies the inertia tensor at empty mass of the craft.

Inputs and The first input is mass.
Outputs The second input is rate of change of mass.
The first output is inertia tensor.

The second output is rate of change of inertia tensor.

See Also Estimate Center of Gravity

Symmetric Inertia Tensor

3-149

Euler Angles to Direction Cosine Matrix

Purpose Convert Euler angles to direction cosine matrix
Library Utilities/Axes Transformations
Description The Euler Angles to Direction Cosine Matrix block converts the three Euler

rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in inertial axes

(0x, 0y, 02()) into a vector in body axes (0xg, 0y3,0z3). The order of the axis
rotations required to bring (ox3, 0y, 0z5) into coincidence with (ox, 0y, 0z)
is first a rotation about oxg through the roll angle (¢) to axes (oxq, 0y4, 025) .
Second a rotation about 0y, through the pitch angle (0) to axes (0ox4, 0y, 0z,),
and finally a rotation about 0z; through the yaw angle (y) to

axes(0x, 0y, 02) -

EulzDCh |

ox3 0x
oy3 = DCM oyo
0z 0z
0x3 10 0 cosO 0 —sin6||cosy siny 0| |°%0
0y3| = |0 cos¢ sing||0 10 —siny cosy 0] |0y
0zg 0 —sin¢ cos¢||sinb 0 cosO ||0 0 1 0z

Combining the three axis transformation matrices defines the following DCM.

cosfcosy cosOsiny —sin6
DCM = (sin¢sinOcosy — cosdpsiny) (sindsinOsiny + cospcosy) sindcosO
(cos¢sinBcosy + sindsiny) (cosdpsinOsiny — sindpcosy) cosdpcosd

3-150

Euler Angles to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

See Also

Block Parameters: Euler Angles to Directio |
Euler2DCM [mask] [link]

Determing the 3-by-3 direction cosine matrix (DCM] from an Euler
orientation [roll, pitch, paw). The output DM transforms vectors fram
inertial axes to body axes.

k. I Cancel | Help | Apply |

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

|

3-151

Euler Angles to Quaternions

Purpose
Library

Description

EulzZQuat |

3-152

Convert Euler angles to a quaternion vector
Utilities/Axes Transformations

The Euler Angles to Quaternions block converts the rotation described by the
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector

(90,41,92,93)-
A quaternion vector represents a rotation about a unit vector (p, My M,)

through an angle 6. A unit quaternion itself has unit magnitude, and can be
written in the following vector format.

90 cos(0/2)
qq sin(0/2)u,
T g, T [siner2)n,

qs sin(0/2)u,
An alternative representation of a quaternion is as a complex number,
q = qo+iqy+jqg+kqg

where, for the purposes of multiplication,

i2=j2=k2=—1

ij = ji=k
Jjk = —kj = i,
ki = -ik = j

The benefit of representing the quaternion in this way is the ease with which
the quaternion product can represent the resulting transformation after two or
more rotations. The quaternion to represent the rotation through the three
Euler angles is given below.

o= v, = el 3) (3 (2 (3 ey ()

Expanding the preceding representation gives the four quaternion elements
following.

Euler Angles to Quaternions

_cos(g)
q
q(z _ sin@)
Zz cos(g)
=0

Dialog Box

o
=}
2]

wn

i

=]
N\ TN TN\ 7N\
NID
N7

o
o
7]

WIS WD

[\Jf="]

[«
o
2]

SE

Q o (@)
o o o
n n n

VO 77\ 7N\ 7N\

Z.
B

Block Parameters: Euler Angles to Quaternic

" Euler2Quaternion [mask] [link)

N— - ~ N——

N N <

Nk

+ [+
w g @,
=} |7 B

7 ~ ~ ~ 7N\ 7 ~N

[
z.
B

Cre e G

[\Jo=g

8 @, &a
® =} =]
/I—G\D 7N\ 7N\ N\

Z.
=]

Calculate quaternion [q0,q17,92.93] fram Euler angles [roll, pitch, vaw]

o]

Cancel |

Help

Apply

Inputs and
Outputs

See Also

The output is a 4-by-1 quaternion vector.

Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

The input is a 3-by-1 vector of Euler angles.

JERNIE

NID

NID

= =) =

[«
o
7]

D N D

—

e NE ke

N—

(] TSN V)

3-153

Force Conversion

Purpose
Library

Description

Ibf —* g

Dialog Box

Inputs and
Outputs

3-154

Convert from force units to desired force units
Utilities/Axes Transformations

The Force Conversion block computes the conversion factor from specified
input force units to specified output force units and applies the conversion
factor to the input signal.

The Force Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Block Parameters: Force Conversion |

— Force Correersion [magk] [link]

Conwert units of input signal to dezired output units.

r— Parameters

Iritial units: |||;.f

L el

Final urits: IN

Ok, | Cancel | Help I Aapply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

1bf Pound force

N Newtons

The input is force in initial force units.

The output is force in final force units.

Force Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

3-155

Gain Scheduled Lead-Lag

Purpose Implement a first-order lead-lag with gain-scheduled coefficients

Library GNC/Controls

Description The Gain Scheduled Lead-Lag block implements a first-order lag of the form
: 1+as
2 M+as¥l+b=) u —
b “ T 1vbs°

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they could be
produced from the Look-Up Table (n-D) Simulink block.

Dialog Box
Block Parameters: Gain Scheduled Lead-La E|
—Gain Scheduled Lead-Lag [mazk] (link)]

Implement gain-scheduled first-order lead-lag of the form [1+a.5]/1+b.2].
Iritial output iz given by [X_intial+a.e)/b where x_initial iz the initial state
defined in the mask dialog box, Mote that b should newver be allowed to be
zeno.

r— Parameters
Initial state, «_initial:

o

(1] I Cancel | Help Apply

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state, the
initial output is given by

” _ xinitial + ae
|t =0~ b
Inputs and The first input is the filter input.

Outputs

The second input is the numerator coefficient.
The third input is the denominator coefficient.

The output is the filter output

3-156

Horizontal Wind Model

Purpose
Library
Description

DM ; Vo (TS

Harizantal

Dialog Box

Transform horizontal wind into body-axes coordinates
Environment/Wind

The Horizontal Wind Model block computes the wind velocity in body-axes
coordinates.

The wind is specified by wind speed and wind direction in Earth axes. The
speed and direction can be constant or variable over time. The direction of the
wind is in degrees clockwise from the direction of the Earth x-axis (north). The
wind direction is defined as the direction from which the wind is coming. Using
the direction cosine matrix (DCM), the wind velocities are transformed into
body-axes coordinates.

Block Parameters: Horizontal Wind Model]
— Horizontal “wind kModel [mazk] (link]

Tranzform horizontal wind [north and east components] into body
coordinates given wind speed, wind direction and direction cosine matris

[DCH).

Urits: | Metric (MKS) =
‘Wwind speed source: IIntemaI j
‘Wwind speed at altitude [m/z):

i

‘wind direction source: IIntemaI j

‘Wwind direction at altitude [degrees clockwize from north]:
Jo

QK I Cancel Help Apply

Units
Specifies the input and output units:

Wind Speed Wind Velocity
Metric (MKS) Meters per second Meters per second
English (Velocity in ft/s) Feet per second Feet per second
English (Velocity in kts) Knots Knots

3-157

Horizontal Wind Model

Inputs and
Outputs

See Also

3-158

Wind speed source
Specify source of wind speed:

External Variable wind speed input to block

Internal Constant wind speed specified in mask

Wind speed at altitude (m/s)
Constant wind speed used if internal wind speed source is selected.

Wind direction source
Specify source of wind direction:

External Variable wind direction input to block

Internal Constant wind direction specified in mask

Wind direction at altitude (degrees clockwise from north)
Constant wind direction used if internal wind direction source is selected.

The direction of the wind is in degrees clockwise from the direction of the
Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming.

The first input is direction cosine matrix.

The second optional input is the wind speed in selected units.

The third optional input is the wind direction in degrees.

The output of the block is the wind velocity in body-axes, in selected units.

Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)
Discrete Wind Gust Model

Wind Shear Model

Ideal Airspeed Correction

Purpose

Library

Description

TAS (mis)
almis) GAS (mis)
P, P2

T

Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Flight Parameters

The Ideal Airspeed Correction block calculates one of the following airspeeds:
equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS),
from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction block.
The first equation shows TAS as a function of EAS, relative pressure ratio at
altitude (8), and speed of sound at altitude (a).

EAS xa
CLO/\/S

TAS =

Using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, the last two equations for EAS and CAS are derived.

2yP [q (y=-1)/v }
EAS = |———||1+1 -1
«/(Y—l)po (P)

P -
A/(yz_}’l)opo[(Pio+ 1)(7 1)/v_1}

In order to generate a correction table and its approximate inverse, these two
equations were solved for dynamic pressure (¢). Having values of q by a
function of EAS and ambient pressure at altitude (P) or by a function of CAS,
allows the two equations to be solved using the other’s solution for ¢, thus
creating a solution for EAS that depends on P and CAS and a solution for CAS
that depends on P and EAS.

CAS

3-159

Ideal Airspeed Correction

Dialog Box

3-160

Block Parameters: Ideal Airspeed Correction |

r— |deal Airspeed Corection [mazk)] (link]

Calculate equivalent airspeed [EAS), calibrated airspeed [CAS), or true
airzpeed [TAS] from one of the other two airspeeds.

Bazed on assumption of compressible, isentropic [subsonic flow], dry air
with constant specific heat ratio [gamma).

.
F

Urits: | Metric (MKS)

Airzpeed input: I TAS

Airzpeed output: I CAS

Lef Lel Lo Lo

Action for out of range input: IE”D[

QK | Cancel | Help I Apply |

Units
Specifies the input and output units:

Airspeed Speed of Air Pressure

Input Sound
Metric (MKS) Meters per Meters per Pascal

second second
English (Velocity Feet per Feet per Pound force per
in ft/s) second second square inch
English (Velocity Knots Knots Pound force per
in kts) square inch

Airspeed input
Specify the airspeed input type:

TAS True airspeed
EAS Equivalent airspeed
CAS Calibrated airspeed

Airspeed
Output

Meters per
second

Feet per
second

Knots

Ideal Airspeed Correction

Inputs and
Outputs

Assumptions
and Limitations

Examples

References

Airspeed output
Specify the airspeed output type:
Velocity Input Velocity Output
TAS EAS (Equivalent airspeed)
CAS (Calibrated airspeed)
EAS TAS (True airspeed)
CAS (Calibrated airspeed)
CAS TAS (True airspeed)

EAS (Equivalent airspeed)

Action for out of range input
Specify if an out of range input (supersonic airspeeds) invokes a warning,

an error, or no action.
The first input is the selected airspeed in the selected units.
The second input is the speed of sound in the selected units.
The third input is the static pressure in the selected units.
The output of the block is the selected airspeed in the selected units.

This block assumes that the air flow is compressible, isentropic (subsonic flow),
dry air with constant specific heat ratio, y.

See the aeroblk indicated model and the aeroblk calibrated model for
examples of this block.

Lowry, J. T., “Performance of Light Aircraft,” AIAA Education Series,
Washington, DC, 1999.

“Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney,
August, 1986.

3-161

Incidence & Airspeed

Purpose
Library

Description

o

W

Dialog Box

Inputs and
Outputs

Examples

See Also

3-162

Calculate incidence and air speed
Flight Parameters

The Incidence & Airspeed block supports the 3DoF equations of motion model
by calculating the angle between the velocity vector and the body, and also the
total air speed from the velocity components in the body-fixed coordinate
frame.

o = atan(w)
u
V = uz+w2

Block Parameters: Incidence & Airspeedi@ #

Calculate the angle between the body and the velocity vector [incidence]

Incidencetiirzpeed [mask] (link]
’iand the velocity magnitude from the components in body axes [U.w).

QK I Cancel | Help | Apply |

The input to the block is the two-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the air speed of the body.

See the aeroblk _guidance model and the aero_guidance_airframe model for
examples of this block.

3DoF (Body Axes)
Incidence, Sideslip & Airspeed

Incidence, Sideslip & Airspeed

Purpose
Library

Description

Dialog Box

Inputs and
Outputs

Examples

See Also

Calculate incidence, sideslip, and air speed
Flight Parameters

The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler Angles) and
6DoF (Quaternion) models by calculating the angles between the velocity
vector and the body, and also the total air speed from the velocity components
in the body-fixed coordinate frame.

o = atan(&)
u
. (v
B = asm(‘—])
V= Jul+ o2+ w?

Block Parameters: Incidence, Sideslip & ' #

Calculate the angles between the body and the velocity vector (incidence
and sideslip], and the velocity magnitude from the components in body

Incidence, Sidesliphairspeed [mask] [link]
Lxes b).

QK I Cancel | Help | Apply |

The input to the block is the three-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle in radians.
The second output of the block is the sideslip angle in radians.

The third output is the air speed of the body.
See Airframe in the aeroblk_HL20 model for an example of this block.

6DoF (Euler Angles)

6DoF (Quaternion)

Incidence & Airspeed

Simple Variable Mass 6DoF (Euler Angles)

3-163

Incidence, Sideslip & Airspeed

Simple Variable Mass 6DoF (Quaternion)
Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)

3-164

Interpolate Matrix(x)

Purpose
Library

Description

o helatrisi) -

Dialog Box

Inputs and
Outputs

Return an interpolated matrix for given input x
GNC/Controls

The Interpolate Matrix(x) block interpolates a one-dimensional array of
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number
of values of an independent variable x = [x; X9 x3 ... x; %;,7 ... x,,]. Then for
x; < x < x;, 1, the block output is given by

(1-M)M(x;) +AM(x; , 1)
where the interpolation fraction is defined as

Block Parameters: Interpolate Matriz(x) #

— MatrixSchedule-10 [mask] [link]

Fieturn an interpolated matrix for given input 2. Input % must be from the
Simulink. PreLook-up Index Search block.

=

M atrix to interpolate:

Imatrix

QK I Cancel | Help | Apply

Matrix to interpolate

Matrix to be interpolated. It should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example, if
you have three matrices A, B, and C defined at x = 0,x = 0.5, and

X = 1.0, then the input matrix is given by

matrix(:,:,1) = A;
matrix(:,:,2) = B;
matrix(:,:,3) = C;
The first input is the first independent variable.

The output is the interpolated matrix.

3-165

Interpolate Matrix(x)

Assumptions This block must be driven from the Simulink PreLook-up Index Search block.
and Limitations

Examples See the following Aerospace Blockset blocks: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)

3-166

Interpolate Matrix(x,y)

Purpose
Library

Description

x
¥ (= R Ty

wt

Dialog Box

Return an interpolated matrix for given inputs x and y

GNC/Controls

The Interpolate Matrix(x,y) block interpolates a two-dimensional array of
matrices.

This two-dimensional case assumes the matrix is defined as a function of two
independent variables, x = [x; xp x3 ... %; X7 ... Xyl andy = [y; y9¥3 ... ¥j ¥ju1
.. ¥ml. For given values of x and y, four matrices are interpolated. Then for

x; <x <x;,7 and y; <y <yj,1, the output matrix is given by

}"y[(l _}\’x)M(xpyJ.q.]_) +)\‘xM(xl+ 1’yj+ 1)]

where the two interpolation fractions are denoted by
hy = (0 =2;)/(%; 1= %)

and
7¥y = (y—yj)/(yj+1—yj)

Block Parameters: Interpolate Matrix(x.y' |
— MatrixSchedule-2D [mask] [link]

Fieturn an interpolated matrix for given inputs 2 and y. [nputs » and p must
be from Simulink. PreLook-up Index Search block.

=
F

M atrix to interpolate:

Imatrix

QK I Cancel | Help | Apply

Matrix to interpolate

Matrix to be interpolated. It should be four dimensional, the first two
dimensions corresponding to the matrix at each value of x and y. For
example, if you have four matrices A, B, C, and D defined at

(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and

(x = 1.0,y = 3.0), then the input matrix is given by

3-167

Interpolate Matrix(x,y)

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

3-168

matrix 1

LR

matrix(:,:,1, ;

H

1
O O W >

(:5:,1,1)
(: 1,2)
matrix(:,:,2,1)
matrix(:,:,2,2)

B)

The first input is the first independent variable.
The second input is the second independent variable.

The output is the interpolated matrix.

This block must be driven from the Simulink PreLookup Index Search block.

See the following Aerospace Blockset blocks: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D
Self-Conditioned [A(v),B(v),C(v),D(v)].

Interpolate Matrix(x)

Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y,z)

Purpose

Library

Description

¥
w hlgtrizia, w21
z

W

Return an interpolated matrix for given inputs x, y, and z
GNC/Controls

The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of
matrices.

This three-dimensional case assumes the matrix is defined as a function of
three independent variables

x=[xyxgxg3... % Xjyp o % L, ¥=[y152¥3 - ¥j¥jr1 - Yl

z=[272923... 2} Zp41 - 2p]

For given values of x, y, and z, eight matrices are interpolated. Then for

xi<x<xi+1,yj<y <yj+1

2p<Z2<Zpy1

the output matrix is given by

(A-2){1- ky)[(l - Xx)M(xi,yj, zp) + A M(x; Yy zp)] +
Xy[(l - kx)M(xi, Yi+ 12p) + kxM(xi + 1Y+ 121}
+A,{(1- Xy)[(l - Xx)M(xi,yj, 2y, 1) A M(x; 1Yjp 2y DI+
ML =AMy 12g 1)+ MM Y12, D1
where the three interpolation fractions are denoted by
he = (=2)/(x; 1 -%;)
Ay = =)/ Oje1-Y))
hy = (2-2)/ (2, 1-2p)

In the three-dimensional case, the interpolation is carried out first on x, then
y, and finally z.

3-169

Interpolate Matrix(x,y,z)

.
Dialog Box
Block Parameters: Interpolate Matriz(H, ¥,z #

— MatrixSchedule-30 [mask] [link]

Fieturn an interpolated matrix for given inputs %, v, and 2. Inputs =, v, 2
must be from Simulink PreLook-up Index Search block.

=

M atrix to interpolate:

Imatrix

QK I Cancel | Help | Apply

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of x, y, and z, then the corresponding input matrix is

given by
(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;
(x = 0.0,y =1.0,z = 0.5) matrix(:,:,1,1,2) = B;
(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;
(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;
(x = 1.0,y =1.0,z = 0.1) matrix(:,:,2,1,1) = E;
(x =1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;
(x =1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;
(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;
Inputs and The first input is the first independent variable.
Outputs The second input is the second independent variable.
The third input is the third independent variable.
The output is the interpolated matrix.
Assumptions This block must be driven from the Simulink PreLookup Index Search block.

and Limitations

3-170

Interpolate Matrix(x,y,z)

Examples See the following Aerospace Blockset blocks: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(V),B(v),C(v),F(v),H(v)], and 3D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)
Interpolate Matrix(x,y)

3-171

Invert 3x3 Matrix

Purpose
Library

Description

at L
[Ex3)

Dialog Box

Inputs and
Outputs

See Also

3-172

Compute the inverse of 3-by-3 matrix using determinant formula.
Utilities/Math Operations

The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix using
determinant formula.

The inverse of the matrix is calculated by

If the det(A) = 0, an error is thrown and the simulation will stop.

Block Parameters: Invert 3x3 Matrix |

"Invert 33 Matrix [mask] [link]

Compute the inverse of 3-by-3 matrix using determinant formula.

QK I Cancel | Help | Apply

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 matrix inverse of input matrix.

Adjoint of 3x3 Matrix
Create 3x3 Matrix

Determinant of 3x3 Matrix

ISA Atmosphere Model

Purpose

Library

Description

I15A

Tik)

EXGy]
b gm) ﬁi P (P2
p lhgire’)

Dialog Box

Inputs and

Outputs

Assumptions
and Limitations

References

See Also

Implement the International Standard Atmosphere (ISA)
Environment/Atmosphere

The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for ambient
temperature, pressure, density, and speed of sound for the input geopotential
altitude.

The ISA Atmosphere Model block icon displays the input and output metric
units.

Block Parameters: ISA Atmosphere Model |
International Standard Atmozphere Model [mask] [link)

Compute International Standard Atmozphere [|54) model for altitudes
between O Km and 20 Km uzing a lapze rate method.

Select change atmospheric parameters to create custom atmozphere.

=
F

lrl_ Change atmospheric parameters ‘

QK I Cancel | Help | Apply |

Change atmospheric parameters

Select to customize various atmospheric parameters to be different from
the ISA values.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Below the geopotential altitude of 0 km and above the geopotential altitude of
20 km, temperature and pressure values are held. Density and speed of sound

are calculated using a perfect gas relationship.

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

COESA Atmosphere Model, Lapse Rate Model

3-173

Lapse Rate Model

Purpose

Library

Description

TiK)

3-174

Implement lapse rate model for atmosphere
Environment/Atmosphere

The Lapse Rate Model block implements the mathematical representation of
the lapse rate atmospheric equations for ambient temperature, pressure,
density, and speed of sound for the input geopotential altitude. You can
customize this atmospheric model, described below, by specifying atmospheric
properties in the block dialog.

The following equations define the troposphere

T =T, Lh
T £
P= PO.(T—O)LR
g

a

JYRT

The following equations define the tropopause (lower stratosphere)

T =216.7°K
g g _
pPop (1)[7?71 _eRT(IIOOO h)
o] To
T iiR 1%(11000%)
o= (B

Lapse Rate Model

g =

Absolute temperature at mean sea level in degrees Kelvin
Air density at mean sea level in kg/m?

Static pressure at mean sea level in N/m?

Altitude in m

Absolute temperature at altitude & in degrees Kelvin
Air density at altitude % in kg/m?

Static pressure at altitude 4 in N/m?

Speed of sound at altitude & in m/s?

Lapse rate in degrees Kelvin/m

Characteristic gas constant J/kg-degrees Kelvin
Specific heat ratio

Acceleration due to gravity in m/s?

The Lapse Rate Model block icon displays the input and output metric units.

3-175

Lapse Rate Model

Dialog Box

Block Parameters: Lapse Rate Model #
— International Standard Atmozphere Model [mask] [link]
Compute International Standard Atmozphere [|54) model for altitudes
between O Km and 20 Km uzing a lapze rate method.

Select change atmospheric parameters to create custom atmozphere.

=
F

[¥ Change atmospheric parameters
Acceleration due ta gravity [mds"2):
|9.50885

Fiatio of specific heats:
1.4

Characteristic gas constant [J/Kg/k]:
|287.0531

Lapse rate [K./m]:
|0.0085

Height of troposphere [m]:
|11000

Height of ropopause [m]:
| 20000

Air density at mean sea level [Ka/m™3):
|1.225

Ambient pressure at mean sea level [N/m™2):
[101325

Ambient temperature at mean sea level (K]
28815

QK I Cancel | Help | Apply |

Change atmospheric parameters

When selected, the following atmospheric parameters can be customized to
be different from the ISA values.

Acceleration due to gravity
Specify the acceleration due to gravity (g).

Ratio of specific heats
Specify the ratio of specific heats (y).

Characteristic gas constant
Specify the characteristic gas constant (R).

3-176

Lapse Rate Model

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Lapse rate
Specify the lapse rate of the troposphere (L).

Height of troposphere

Specify the upper altitude of the troposphere, a range of decreasing
temperature.

Height of tropopause

Specify the upper altitude of the tropopause, a range of constant
temperature.

Air density at mean sea level
Specify the air density at sea level (p).

Ambient pressure at mean sea level
Specify the ambient pressure at sea level (P).

Ambient temperature at mean sea level
Specify the ambient temperature at sea level (T).
The input is geopotential height.
The four outputs are temperature, speed of sound, air pressure, and air

density.

Below the geopotential altitude of 0 km and above the geopotential altitude of
the tropopause, temperature and pressure values are held. Density and speed
of sound are calculated using a perfect gas relationship.

[1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

COESA Atmosphere Model
ISA Atmosphere Model

3-177

Length Conversion

Purpose
Library
Description

ft —* mp

Dialog Box

Inputs and
Outputs

3-178

Convert from length units to desired length units
Utilities/Unit Conversions

The Length Conversion block computes the conversion factor from specified
input length units to specified output length units and applies the conversion
factor to the input signal.

The Length Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Block Parameters: Length Conversion #

i~ Length Conversion [mask] [link]

Convert unitz of input signal to desired output units,

=
F

Initial units: I it

[
[

Final units: I m

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

The input is length in initial length units.

Length Conversion

See Also

The output is length in final length units.

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

3-179

Mach Number

Purpose
Library

Description

W
Tz b

T

a

Dialog Box

Inputs and
Outputs

Examples

See Also

3-180

Compute Mach number using velocity and speed of sound
Flight Parameters

The Mach Number block computes Mach number.

Mach number is defined as

Mach = _‘w
a

where a is speed of sound and V is velocity vector.

Block Parameters: Mach Number |

" Mach Mumber [mazk] [link]

Compute Mach number using velocity and speed of sound.

QK I Cancel | Help | Apply |

The first input is the velocity vector.
The second input is the speed of sound.

The output of the block is the Mach number.
See Airframe in the aeroblk_HL20 model for an example of this block.

Aerodynamic Forces and Moments
Dynamic Pressure

Mass Conversion

Purpose
Library

Description

bm —+ kgp

Dialog Box

Inputs and
Outputs

See Also

Convert from mass units to desired mass units
Utilities/Unit Conversions

The Mass Conversion block computes the conversion factor from specified
input mass units to specified output mass units and applies the conversion
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Block Parameters: Mass Conversion #

— Mass Conversion [mask] [link]

Convert unitz of input signal to desired output units,

=
F

Initial urits: I Ibrii

[
[

Final units: I kg

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

lbm Pound mass
kg Kilograms
slug Slugs

The input is the mass in initial mass units.

The output is the mass in final mass units.

Acceleration Conversion

Angle Conversion

3-181

Mass Conversion

3-182

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Pressure Conversion
Temperature Conversion

Velocity Conversion

Moments About CG Due to Forces

Purpose

Library

Description

GG("C;’3 Tl

Dialog Box

Inputs and
Outputs

See Also

Compute moments about center of gravity due to forces that are applied at
point CP, not the center of gravity

Mass Properties

The Moments about CG due to Forces block computes moments about center of
gravity due to forces that are applied at point CP not the center of gravity.

Block Parameters: Moments about CG d |
"Moments About CG Due To Force [maszk] (link]

Compute moments about center of gravity due to forces which are applied
at point CF nat the center of gravity.

QK I Cancel | Help | Apply |

The first input is the forces applied at point CP.

The second input is the center of gravity.

The third input is the application point of forces.

The output of the block is moments at the center of gravity in x-axes, y-axes and
z-axes.

Aerodynamic Forces and Moments

Estimate Center of Gravity

3-183

Non-Standard Day 210C

Purpose
Library

Description

TIK)
a (m's)

him) ZoEe

ng2nc TPl
p lhatrm)

Dialog Box

3-184

Implement the MIL-STD-210C climatic data
Environment/Atmosphere

The Non-Standard Day 210C block implements a portion of the climatic data
of the MIL-STD-210C worldwide air environment to 80 km (geometric or
approximately 262000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output units
selected from the Units pop-up menu.

Block Parameters: Non-Standard Day 2

—Atmosphere Model [mazk) (link]

Calculate various atmosphere models including 1976 COESA-extended
.5, Standard Atmosphere, MIL-HDEK-310, and MIL-STD-210C. Given
geopotential altitude, calculate absolute temperature, pressure and density
uzing standard interpolation formulas.

The COESA model extrapolates temperature linearly and pressure/density
logarithmic:ally beyond the range

0 <= altitude <= 84852 meters [geopatential]

The MIL specifications are not extrapolated beyond their defined altitudes
which are typically

0 <= altitude <= 80000 meters [geometric]

Depending on the given information either density or pressure is
calculated using a perfect gas relationship.

The unit spstem zelected applies to both input and outputs.

=) |

4

Urits: | Metric (MKS)

Specification: I MIL-STD-210C

Atmozpheric model type: Imeile

Extreme parameter: IHigh temperature

Frequency of occurmence: |1°/°

Altitude of extreme value: |5 km (16404 ft)

4

Lef Lel Lo Lef e L] e

Action for out of range input: I\.\.-'aming

QK | Cancel | Help I Apply |

Non-Standard Day 210C

Units
Specifies the input and output units:

Height Temperature Speed of Sound Air Pressure Air Density

Metric Meters Degrees Meters per Pascal Kilograms

(MKS) Kelvin second per cubic
meter

English Feet Degrees Feet per second Pound force Slug per

(Velocity Rankine per square cubic foot

in ft/s) inch

English Feet Degrees Knots Pound force Slug per

(Velocity Rankine per square cubic foot

in kts) inch

Specification

Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-STD-210C.

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See

the block reference for more information.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the

block reference for more information.

MIL-STD-210C

Atmospheric model type
Select the representation of the atmospheric data.

Profile Realistic atmospheric profiles associated with extremes at
specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when the
total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

3-185

Non-Standard Day 210C

Extreme parameter
Select the atmospheric parameter that is the extreme value.
High temperature
Low temperature
High density
Low density

High pressure This option is available only when Envelope is
selected for Atmospheric model type

Low pressure This option is available only when Envelope is
selected for Atmospheric model type

Frequency of occurrence
Select percent of time the values would occur.

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is

selected for Atmospheric model type.

Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

5 km (16404 ft)

10 km (32808 ft)
20 km (65617 ft)
30 km (98425 ft)
40 km (131234 ft)

3-186

Non-Standard Day 210C

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80000 meters (approximately 262000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3281 feet) and above the
geometric altitude of 30000 meters (approximately 98425 feet). These
exceptions are due to lack of data in MIL-STD-210C for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-STD-210C for these conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-STD-210C.

Global Climatic Data for Developing Military Products (MIL-STD-210C), 9
January 1987, Department of Defense, Washington, D.C.

COESA Atmosphere Model
ISA Atmosphere Model
Non-Standard Day 310

3-187

Non-Standard Day 310

Purpose
Library

Description

TiK)
aim'=s)
b ()
ns o P
p tkaim]

Dialog Box

3-188

Implement the MIL-HDBK-310 climatic data

Environment/Atmosphere

The Non-Standard Day 310 block implements a portion of the climatic data of
the MIL-HDBK-310 worldwide air environment to 80 km (geometric or
approximately 262000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output units

selected from the Units pop-up menu.

Block Parameters: Non-Standard Day 310

—Atmosphere Model [mazk) (link]

Calculate various atmosphere models including 1976 COESA-extended
.5, Standard Atmosphere, MIL-HDEK-310, and MIL-STD-210C. Given
geopotential altitude, calculate absolute temperature, pressure and density
uzing standard interpolation formulas.

The COESA model extrapolates temperature linearly and pressure/density
logarithmic:ally beyond the range

0 <= altitude <= 84852 meters [geopatential]

The MIL specifications are not extrapolated beyond their defined altitudes
which are typically

0 <= altitude <= 80000 meters [geometric]

Depending on the given information either density or pressure is
calculated using a perfect gas relationship.

The unit spstem zelected applies to both input and outputs.

=) |

4

Urits: | Metric (MKS)

Specification: I MIL-HDEK-310

Atmozpheric model type: Imeile

Extreme parameter: IHigh temperature

Frequency of occurmence: |1°/°

Altitude of extreme value: |5 km (16404 ft)

4

Lef Lel Lo Lef e L] e

Action for out of range input: I\.\.-'aming

QK | Cancel | Help I Apply |

Non-Standard Day 310

Units
Specifies the input and output units:

Height Temperature Speed of Sound Air Pressure Air Density

Metric Meters Degrees Meters per Pascal Kilograms

(MKS) Kelvin second per cubic
meter

English Feet Degrees Feet per second Pound force Slug per

(Velocity Rankine per square cubic foot

in ft/s) inch

English Feet Degrees Knots Pound force Slug per

(Velocity Rankine per square cubic foot

in kts) inch

Specification

Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-HDBK-310.

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See

the block reference for more information.
MIL-HDBK-310

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the

block reference for more information.

Atmospheric model type
Select the representation of the atmospheric data.

Profile Realistic atmospheric profiles associated with extremes
at specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when
the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

3-189

Non-Standard Day 310

Extreme parameter
Select the atmospheric parameter which is the extreme value.
High temperature
Low temperature
High density
Low density

High pressure This option is available only when Envelope
is selected for Atmospheric model type.

Low pressure This option is available only when Envelope
is selected for Atmospheric model type.

Frequency of occurrence
Select percent of time the values would occur.

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is

selected for Atmospheric model type.

Altitude of extreme value

Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

5 km (16404 ft)

10 km (32808 ft)
20 km (65617 ft)
30 km (98425 ft)
40 km (131234 ft)

3-190

Non-Standard Day 310

Inputs and
Outputs

Assumptions
and Limitations

References

See Also

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80000 meters (approximately 262000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3281 feet) and above the
geometric altitude of 30000 meters (approximately 98425 feet). These
exceptions are due to lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-HDBK-310 for these
conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-HDBK-310.

Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23
June 1997, Department of Defense, Washington, D.C.

COESA Atmosphere Model
ISA Atmosphere Model
Non-Standard Day 210C

3-191

Pressure Altitude

Purpose
Library

Description

P, P2 Alt

pres

fri)

Dialog Box

Inputs and
Outputs

3-192

Calculate pressure altitude based on ambient pressure
Environment/Atmosphere

The Pressure Altitude block computes the pressure altitude based on ambient
pressure. Pressure altitude is the altitude in the 1976 Committee on the
Eztension of the Standard Atmosphere (COESA) United States with specified
ambient pressure.

Pressure altitude is also known as the mean sea level altitude (MSL).

The Pressure Altitude block icon displays the input and output units selected
from the Units pop-up menu.

Block Parameters: Pressure Altitude |

r— Pressure Altitude [mask] [link]

Calculate prezzure altitude based on ambient pressure.

Pressure altitude is the altitude in the 1976 COESA-extended LS.
Standard Atmosphere with specified ambient pressure. Pressure altitude is
alzo known as the mean sea level alitude [MSL).

=

Urits: [Metric MKS) |
Action for out of range input: I\.\.-'aming j
QK | Cancel | Help I Apply |
Units
Specifies the input units:
Pstatic Alt p

Metric (MKS) Pascal Meters
English Pound force per square inch Feet

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

The input is the static pressure.

The output is the pressure altitude.

Pressure Altitude

Assumptions Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the
and Limitations pressure of 101325 Pa (approximately 14.7 psi), altitude values are
extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

3-193

Pressure Conversion

Purpose Convert from pressure units to desired pressure units
Library Utilities/Unit Conversions
Descripl’ion The Pressure Conversion block computes the conversion factor from specified

input pressure units to specified output pressure units and applies the

—' . . .
R Kp conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Dialog Box

Block Parameters: Pressure Conyersion #

r— Prezsure Convergion [mazk] [link]

Convert unitz of input signal to desired output units,

=
F

Iitial units: I psi

[
[

Final units: I Pa

QK | Cancel | Help I Apply |

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

psi Pound mass per square inch
Pa Pascals
psf Pound mass per square foot
atm Atmospheres

Inputs and The input is the pressure in initial pressure units.

Outputs The output is the pressure in final pressure units.

3-194

Pressure Conversion

See Also

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion

Velocity Conversion

3-195

Quaternions to Direction Cosine Matrix

Purpose
Library

Description

QuatzbChl

3-196

Convert quaternion vector to direction cosine matrix
Utilities/Axes Transformations

The Quaternions to Direction Cosine Matrix block transforms the four-element
unit quaternion vector (qg,q1,99,93) into a 3-by-3 direction cosine matrix
(DCM). The outputted DCM performs the coordinate transformation of a vector
in inertial axes to a vector in body axe+ S.

Using quaternion algebra, if a point P is subject to the rotation described by a
quaternion g, it changes to P’ given by the following relationship:

P’ = gP¢°

q=qy+iqy+jgy+kqs

q° = q9-iq;-jay-kqs

P =0+ix+jy+kz

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in
terms of P in the vector quaternion format:

0
0 2 2 2 2
' (Qo+a1-95-93)x +2(9199-9093)y +2(q193+9092)?
P’ = AT 2 2 2 2
y 2(9¢93+9199)x +(q9—q71+499-93)Y +2(q9953—9091)?
z' 2 2 2 2
12(9193-9092)% + 2(9991 + 92930y + (90~ 91 92+ q3)?|

Since individual terms in P’ are linear combinations of terms in x, ¥, and z, a
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from
the preceding. This matrix rotates a vector in inertial axes, and hence is
transposed to generate the DCM that performs the coordinate transformation

of a vector in inertial axes into body axes.

Quaternions to Direction Cosine Matrix

Dialog Box

Inputs and
Outputs

See Also

2 2 2 2
(99*+91-92-93) 2(q199+9¢q3) 2(9195-9092)

_ 2 2 2 2
DCM = 2(9199-9093) (990—91+93—93) 2(q993+9¢q1)
2 2 2 2
2(9193+9992) 2(9993-9991) (99—91—-93+9q3)
[Block Parameters: Quaternions ko Directio E|

Quatemion2DCM [maszk] [link]

Dretermine the 3-by-3 direction cozine matrix [DCH) from a 4-by-1
quaternion orientation vector. The output DT transforms vectars from
inertial axes to body axes.

QK I Cancel | Help | Apply |

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

Direction Cosine Matrix to Euler Angles
Direction Cosine Matrix to Quaternions
Euler Angles to Direction Cosine Matrix
Euler Angles to Quaternions
Quaternions to Euler Angles

3-197

Quaternions to Euler Angles

Purpose Convert quaternion vector to Euler angles
Library Utilities/Axes Transformations
Descripl'ion The Quaternions to Euler Angles block converts the four-element unit

QuatzEul |

quaternion (qg,q1,99,93) into the equivalent three Euler angle rotations (roll,
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine

matrix (DCM), as functions of the Euler rotation angles, with elements in the
DCM, as functions of a unit quaternion vector:

DCM

DCM

cosfcosy cosOsiny —sin6
(sin¢sinOcosy — cosdpsiny) (sindpsinOsiny + cospcosy) sindcosO
|(cospsinBcosy + singsiny) (cosdpsinBsiny — sinpcosy) cosdpcosd

2 2 2 2
(@9g+91-92-93) 2(Q1Q2+QOQ3) 2(Q1Q3‘Q0Q2)

2 2 2 2
2(9192-9093) (q9—91+92-93) 2(9995+9091)

2 2 2 2
_2((11(13""10(12) 2((12613—‘10(11) (qO—ql—(Iz+Q3)

From the preceding, you can derive the following relationships between DCM
elements and individual Euler angles:

o =

3-198

atan(DCM (2, 3), DCM(3, 3))

2 2 2 2
atan(2(q993+9091),(qg—91-92+943))
asin(-DCM(1, 3))
aSin(—z((I1Q3 - QOCIz))
atan(DCM(1,2), DCM(1,1))

2 2 2 2
atan(2(q199+9(¢93), (@9 +91-99—-93))

Quaternions to Euler Angles

Dialog Box

Inputs and
Outputs

Assumptions
and Limitations

Examples

See Also

Block Parameters: Quaternions to Euler |

" GuatemionZEuler [maszk] [link]

Calculate Euler angles [rall, pitch, yaw] from quaternion [g0.91.92.93]

QK I Cancel | Help | Apply |

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

This implementation generates a pitch angle that lies between +90 degrees,
and roll and yaw angles that lie between +180 degrees.

The Euler angle solution is singular when the pitch angle 0 is equal to +90

degrees.

See aero_six_dof for an example of the use of the Quaternions to Euler Angles
block in an implementation of the equations of motion of a rigid body.
Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

3-199

Relative Ratio

Purpose
Library
Description
=T ap
¥
T) sqri
F_iP2) ap
p, lag/i) sp

Dialog Box

3-200

Calculate relative atmospheric ratios

Flight Parameters

The Relative Ratio block computes the relative atmospheric ratios, including

relative temperature ratio (), /6, relative pressure ratio (8), and relative
density ratio (o).

0 represents the ratio of the air stream temperature at a chosen reference
station relative to sea level standard atmospheric conditions.

d represents the ratio of the air stream pressure at a chosen reference station
relative to sea level standard atmospheric conditions.

o represents the ratio of the air stream density at a chosen reference station
relative to sea level standard atmospheric conditions.

c=2P

Po
The Relative Ratio block icon displays the input units selected from the Units
pop-up menu.

Block Parameters: Relative Ratio E|

i~ Relative Ratio [mask] (link]

Calculate the relative atmospheric ratios including relative temperature
ralio [theta), square root of theta, 1elative pressure ratio [delta), and
relative density ratio [sigmal.

Theta represents the ratio of the air stream temperature at a chosen
reference station relative to sea level standard atmosphenc conditions.

Delta represents the ratio of the air stream pressue at a chosen reference
station relalive to sea level standard atmospheric conditions,

Sigma represents the ratio of the air stream density at a chosen reference:
station relative to sea level standard atmospheric conditions,

=

f

Urits: [Metic (MKS] |
[V Theta:

[Square rock of theta:

[Delta:

¥ Sigma:

0K Cancel I Help I Apply

Relative Ratio

Inputs and
Outputs

Assumptions

References

Units
Specifies the input units:

Tstatic Pstatic rho_static

Metric (MKS) Degrees Kelvin Pascal Kilograms per
cubic meter

English Degrees Rankine Pound force per Slug per cubic foot
square inch

Theta
When selected, the 6 is calculated and static temperature is a required
input.
Square root of theta
When selected, the /0 is calculated and static temperature is a required
input.
Delta
When selected, the 8 is calculated and static pressure is a required input.
Sigma
When selected, the o is calculated and static density is a required input.

The four possible inputs are Mach number, static temperature, static pressure,
and static density.

The four possible outputs are 6, /0, 8, and o.

For cases in which total temperature, total pressure, or total density ratio is

desired (Mach number is nonzero), the total temperature, total pressure, and
total densities are calculated assuming perfect gas (with constant molecular

weight, constant pressure specific heat, and constant specific heat ratio) and
dry air.

Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

3-201

Second Order Linear Actuator

Purpose Implement a second-order linear actuator
Library Actuators
Descripl'ion The Second Order Linear Actuator block outputs the actual actuator position

using the input demanded actuator position and other dialog parameters that
A A aF define the system.

.
Dialog Box
Block Parameters: Second Drder Linear Act #

— Second Order Linear Actuator [mask)] [link]

Implement a second-order actuator model

=

Matural frequency:
|150

[ramping ratio:
jo7

Initial position:
jo

QK I Cancel | Help Apply

Natural frequency

The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.
Initial position

The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and The input is the demanded actuator position.
Outputs

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator

3-202

Second Order Nonlinear Actuator

Purpose
Library

Description

Dialog Box

|

Implement a second-order actuator with rate and deflection limits
Actuators
The Second Order Nonlinear Actuator block outputs the actual actuator

position using the input demanded actuator position and other dialog
parameters that define the system.

Block Parameters: Second Order Nonlinear #

—Second Order Monlinear Actuator [mazk] [link]

Implement a second-order actuator model with zaturation and rate limits.

=

Matural frequency:
|150

[ramping ratio:
jo7

I awirum deflection:
| EED]

Minirum deflection:
|-20pi180

I awirnum rate:
|5007pi 180

Initial position:
jo

QK I Cancel | Help Apply

Natural frequency

The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection

The largest actuator position allowable. The units of maximum deflection
should be the same as the units of demanded actuator position.

3-203

Second Order Nonlinear Actuator

Inputs and
Outputs

Examples

See Also

3-204

Minimum deflection

The smallest actuator position allowable. The units of minimum deflection
should be the same as the units of demanded actuator position.

Maximum rate

The fastest speed allowable for actuator motion. The units of maximum
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

The input is the demanded actuator position.

The output is the actual actuator position.

See the aero_guidance model and Actuators in the aeroblk HL20 model for an
example of this block.

Second Order Linear Actuator

Self-Conditioned [A,B,C,D]

Purpose
Library

Description

e
u_dem

u_meas

Implement a state-space controller in a self-conditioned form

GNC/Controls

The Self-Conditioned [A,B,C,D] block can be used to implement the state-space
controller defined by

%= Ax + Be
u= Cx + De

in the self-conditioned form

2= (A-HC)z+(B-HD)e+Hu

meas

Ugem= Cz+De

The input u,,., is a vector of the achieved actuator positions, and the output
Ugem 18 the vector of controller actuator demands. In the case that the actuators
are not limited, then u,,.,, = udem and substituting the output equation into
the state equation returns the nominal controller. In the case that they are not
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track u,,.,5 but
at the same time not so fast that noise on e is propagated to u4,,,. The matrix
H is designed by a callback to the Control System Toolbox command place to
place the poles at defined locations.

3-205

Self-Conditioned [A,B,C,D]

Dialog Box

3-206

Block Parameters: Self-Conditioned [A,B,C #
r— Self-Conditioned [mazk] [link]

Implement a state-space controller [4,B.C.0] in a self-conditioned form. [f
u_meaz = u_dem, then the implemented controller iz [4,B,C.0]. If u_meas
is limited, e.q., rate limiting, then the poles of the controller become thosze
defined in the mazk dialog box. Uses call to Control Systems Toolbox
function place.m when initializing.

=
F

A-matriz:
Ji1-0.20-3

B-rnatrix:
Ji
C-mnatrix:
jiro
D-matrix:
Jooz

Initial state, =_initial:
jo
Poles of A-H*C = [wl ... wn]:
Ji5-21

QK I Cancel Help Apply

A-matrix

A-matrix of the state-space implementation.
B-matrix

B-matrix of the state-space implementation.
C-matrix

C-matrix of the state-space implementation.
D-matrix

D-matrix of the state-space implementation.
Initial state, x_initial

This is a vector of initial states for the controller, i.e., initial values for the

state vector, z. It should have length equal to the size of the first dimension
of A.

Poles of A-H*C

This is a vector of the desired poles of A-H*C. Hence the number of pole
locations defined should be equal to the dimension of the A-matrix.

Self-Conditioned [A,B,C,D]

Inputs and
Outputs

Assumptions
and Limitations

Examples

|

The first input is the control error.
The second input is the measured actuator position.

The output is the actuator demands.

This block requires the Control System Toolbox.

This Simulink model shows a state-space controller implemented in both
self-conditioned and standard state-space forms. The actuator authority limits
of +/- 0.5 units are modeled by the saturation block.

E!aerohlk_self_cond_cntr i ;Iglll

File Edit WYiew Simulation Format Tools Help

= Ax+Bu
W= Gt Du

State-Space
[Same contmlier, no
salf conditioning]

=

Actuztor
demand

Step att=1son
tracking emrssnt Self-Conditioned Saturmtion:
to the contmlier [A,B,C,00 hodel of actuatar
autharity limits
[401.5,0.5]

Ready [1o02 |odets v

3-207

Self-Conditioned [A,B,C,D]

References

See Also

3-208

Notice that the A-matrix has a zero in the 1,1 element, indicating integral
action.

IEEIEEEI YRR

The top trace shows the conventional state-space implementation. The output
of the controller winds up well past the actuator upper authority limit of +0.5.
The lower trace shows that the self-conditioned form results in an actuator

demand that tracks the upper authority limit, which means that when the sign
of the control error, e, is reversed, the actuator demand responds immediately.

The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(¥)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Simple Variable Mass 3DoF (Body Axes)

Purpose
Library

Description

FL)

B (hl-mj %, Z, im)

drwidt (hals)

Implement three-degrees-of-freedom equations of motion
Equations of Motion/3DoF

The Simple Variable Mass 3DoF (Body Axes) block considers the rotation in the
vertical plane of a body-fixed coordinate frame about an Earth-fixed reference
frame.

Body fixed
coordinate
frame

Earth fixed .
reference frame’

Xe

Ze

3-209

Simple Variable Mass 3DoF (Body Axes)

The equations of motion are

F .
p = —x_mU_ qw-gsin®
m m
F
w=-2-"%, 0u+gcosd
m m
g = —1yq
I
vy
0=gq
I -1
_ yyfull” “yyempty .
yy = m

mfull - mempty

where the applied forces are assumed to act at the center of gravity of the body.

3-210

Simple Variable Mass 3DoF (Body Axes)

Dialog Box

Block Parameters: Simple ¥ariable Mass 3DoF (

—30oF Eokd [mask] [link]

Integrate the three-degrees-of-freedom equations of motion to determine
body position, velocity, attitude, and related values.

—P |
F

Uriits: | Metric (MKS) j

Mass type: I Simple Variable j
Initial welocity:
100

Initial body attitude:
jo

Initial incidence:
jo

Initial body ratation rate:
jo

Initial position [« 2]:
fo o]

Initial mass:
j1.0

Emply mazs:
jos

Full mass:
E

Empty inertia:
jos

Full inertia:
E

Gravity source: IExtema| j

QK I Cancel Help Apply |

|

3-211

Simple Variable Mass 3DoF (Body Axes)

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(Velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described

equations of motion.

Initial velocity

A scalar value for the initial velocity of the body, (V).

Initial body attitude

A scalar value for the initial pitch attitude of the body, (0,)) .

Initial incidence

A scalar value for the initial angle between the velocity vector and the body,

(o) -

Initial body rotation rate

A scalar value for the initial body rotation rate, (q().

3-212

Simple Variable Mass 3DoF (Body Axes)

Inputs and
Outputs

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

External Variable gravity input to block

Internal Constant gravity specified in mask

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity

source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.
The first input to the block is the force acting along the body x-axis, (F).
The second input to the block is the force acting along the body z-axis, (F,) .
The third input to the block is the applied pitch moment, (M).
The fourth input to the block is the rate of change of mass, (m).
The fifth optional input to the block is gravity in the selected units.
The first output from the block is the pitch attitude, in radians (0).

3-213

Simple Variable Mass 3DoF (Body Axes)

See Also

3-214

The second output is the pitch angular rate, in radians per second (g).

The third output is the pitch angular acceleration, in radians per second
squared (g).

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar element containing a flag for fuel tank status,
(Fuel):

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

3DoF (Body Axes)
Custom Variable Mass 3DoF (Body Axes)
Incidence & Airspeed

Simple Variable Mass 6DoF (Euler Angles)

Purpose
o
Library
o e
Description
ERE]
Fe M1 X, im)
EukrAnges $9wiRd)
DSl
M,) ¥ tvs)
Simpk vaisple R4S
Mass dealdt
dreidt (kgis) Ay (i)
Fusl

Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Equations of Motion/6DoF

The Simple Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame (X, Y,, Z,) about an Earth-fixed reference
frame (X, Y,, Z,). The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

Center of
Gravity Xb
0 ub
/
/
/
/
— e
b Yb b
Vb Wb

Ye
Ie

Earth-fixed reference frame

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [F, F, FZ]T are in the body-fixed frame.

F

x
Fy
F

zZ

Eb= = m(‘—ib+(i)x‘—/b)+m‘—/b

3-215

Simple Variable Mass 6DoF (Euler Angles)

3-216

Il
<
(o)
e
I
N QT

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor I is with respect to the
origin O.

L

My= M| = Io+ox(o)+]Io
N
Ixx _Ixy _Ixz

I= _Iyx Iyy _Iyz

_sz _Izy Izz
The inertia tensor is determined using a table lookup which linearly
interpolates between Ig;); and Igppty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

I, ,,-1
_ full empty m
mfull_mempty

The relationship between the body-fixed angular velocity vector, [p q 1T, and
the rate of change of the Euler angles, [¢ 6y 1T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

p ol (10 0 0 (10 0 cos0 0 —sin6| |0) ¢
q| =10/ % |0 cosd¢ sind||[6] |0 cos¢p sing[|0 10 0/=J |
r 0 0 —sin¢ cos¢| |0 0 —sin¢ cos¢|[sin® 0 cosO ||y v

Inverting J then gives the required relationship to determine the Euler rate
vector.

Simple Variable Mass 6DoF (Euler Angles)

Dialog Box

b 1 (sin¢tan®) (cosptan6)
N P _ |0 coso —-sin¢
0 q .
- sin ¢ cosd
Y cosO cosO

Block Parameters: Simple ¥ariable Mass 6ol

— EDoF Eotd [Body dwis] [mazk] [link]

Integrate the sis-degrees-of-freedom equations of mation wsing an Euler
angle representation for the orientation of the body in space.

— Par

Urits: | Metric [MKS)

Mazs type: ISimpIe Yariahle

Lef Lel Lo

Representation: | Euler Aingles

Initial position in inertial axes [<e. Ve Ze]:
finom

Initial velocity in bady axes [v w]:
finom

Initial Euler orientation [roll, pitch, paw]:
finom

Initial body ratation rates [pog.rf:
finom

Initial mass:
1.0

Emply mass:
{05

Full maszs:
20

Emptly inertia matris:
Ieye[S]

Full inertia matriz:
Zepel3)

kK I Cancel Help Anply

Q

|

3-217

Simple Variable Mass 6DoF (Euler Angles)

3-218

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(Velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described

equations of motion.

Representation

Select the representation to use:

Mass Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Euler Angles selection conforms to the previously described equations

of motion.

Simple Variable Mass 6DoF (Euler Angles)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.
The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.
The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

3-219

Simple Variable Mass 6DoF (Euler Angles)

Assumptions
and Limitations

References

See Also

3-220

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yawl], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

¢ 1 indicates that the tank is full.
¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

The block assumes that the applied forces are acting at the center of gravity of
the body.

Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

6DoF (Euler Angles)

6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)\

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Quaternion)

Purpose
.
Library
-
Description
v, fvs)
Foe M X, i)
Guaemion P8 ird)
CGm
i e Vi, fmis)
Simple Vanablke @ ()
lass deafdt
drridt (hgis) A, (s

Fuel

Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Equations of Motion/6DoF

For a description of the coordinate system employed and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain K drives the norm of the quaternion state vector to 1.0 should ¢
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

do 43 99 41 ’Iy)
q1|_ 1|92 93 90 +Ke|T1
d9 24 49 a3 3 D)
d3 —99 91 92 q3

2 2 2 2
e=1-(qy +q; +q3 +q4)

3-221

Simple Variable Mass 6DoF (Quaternion)

Dialog Box
Block Parameters: Simple ¥ariable Mass 6DOF { |
— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | Metric [MES]

Mass type: ISirane Variable

Lef Le] Le

Fiepresentation: I Fuaternion

Iritial positian in inertial axes [$e Yele]
[mom

Iritial velocity in bady ases [v w]:
[mom

Iritial Euler orientation [rall, pitch, waw]:
[mom

Initial body ratation rates [p.a.r:
[mom

Initial mass:
1.0

E mpty mass:
{05

Full mass:
20

E mpty inertia matrix:
|eye[3]

Full inertia matriz:
[Zepel3)

Gain for guaternion normalization:
1.0

ak. I Cancel Help Apply

3-222

Simple Variable Mass 6DoF (Quaternion)

|

Block Parameters: Simple ¥ariable Mass 6DOF { |
— B0 oF EoM (Body dxiz] [mask] [link)]

Integrate the six-degrees-of-freedom equations of motion using an Euler
angle reprezentation for the orentation of the body in space.

— Parameters
U rits: | Metric [MES]

Mass tupe: ISirane ariable

Lef Le] Le

Fepresentation: I Quaternion

Iritial positian in inertial axes (e Yele]
|[u]

Iritial welocity in bady axes [s w]:
|[u]

Iritial Euler arigntation [rall, pitch, waw]:
[lnoo

Initial Body ratation rates [poa.r:
[lnoo

Initial mass:
1.0

Empty mass:
{05

Full mass:
|20

Emipty inertia matrix:
[evela)

Full inertia matris:
[Zepel3)

Gain for guaternion normalization:
1.0

Qk. I Cancel Help Apply

3-223

Simple Variable Mass 6DoF (Quaternion)

3-224

Units

Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass
Metric Newton Newton Meters per Meters Meters Kilogram
(MKS) meter second per
squared second
English Pound Foot Feet per Feet per Feet Slug
(velocity pound second second
in ft/s) squared
English Pound Foot Feet per Knots Feet Slug
(Velocity pound second
in kts) squared
Mass Type
Select the type of mass to use:
Mass Description
Fixed Mass is constant throughout the simulation.

Inertia

Kilogram
meter
squared

Slug foot
squared

Slug foot
squared

Simple Variable Mass and inertia vary linearly as a function of mass

rate.

Custom Variable Mass and inertia variations are customizable.

The Simple Variable selection conforms to the previously described

equations of motion.

Representation

Select the representation to use:

Mass Description
Euler Angles Use Euler angles within equations of motion.
Quaternion Use Quaternions within equations of motion.

The Quaternion selection conforms to the previously described equations of

motion.

Simple Variable Mass 6DoF (Quaternion)

Inputs and
Outputs

Initial position in inertial axes

The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes

The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation

The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates

The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Gain for quaternion normalization

The gain to maintain the norm of the quaternion vector equal to 1.0.
The first input to the block is a vector containing the three applied forces.
The second input is a vector containing the three applied moments.
The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

3-225

Simple Variable Mass 6DoF (Quaternion)

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:
¢ 1 indicates that the tank is full.

¢ O indicates that the integral is neither full nor empty.
¢ -1 indicates that the tank is empty.

Assumptions The block assumes that the applied forces are acting at the center of gravity of
and Limitations the body.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)
6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)
Custom Variable Mass 6DoF (Quaternion)
Simple Variable Mass 6DoF (Euler Angles)

3-226

SinCos

Purpose
Library

Description

sinfu) p
cosiu) B

Dialog Box

Inputs and
Outputs

|

Compute the sine and cosine of the input angle
Utilities/Math Operations

The SinCos block computes the sine and cosine of the input angle, theta.

Block Parameters: SinCos |

" SinCos [mask] [link]

Compute the sine and cosine of input, u. u is in radians.

QK I Cancel | Help | Apply |

The first input is an angle, in radians.
The first output is the sine of the input angle.

The second output is the cosine of the input angle.

3-227

Symmetric Inertia Tensor

Purpose Create an inertia tensor from moments and products of inertia
Library Mass Properties
Description The Symmetric Inertia Tensor block creates an inertia tensor from moments

and products of inertia. Each input corresponds to an element of the tensor.

— The inertia tensor has the form of

I ' I _Ixy _Iyz

Inertia = —Ixy Iyy -1,

I I

_J&z “txz fzz

RS a3 8

ial
Dialog Box
Block Parameters: Symmetric Inertia Tei #

" Symmetric Inertia Tengor [mazk] (link]

Create an inertia tenzor from moments and products of inertia. Each input
cormesponds to an element of the tensor,

QK I Cancel | Help | Apply |

Inputs and The first input is the moment of inertia about the x-axis.
Outputs : . o
The second input is the product of inertia in the xy plane.
The third input is the product of inertia in the xz plane.
The fourth input is the moment of inertia about the y-axis.
The fifth input is the product of inertia in the yz plane.

The sixth input is the moment of inertia about the z-axis.

The output of the block is a symmetric 3-by-3 inertia tensor.

See Also Create 3x3 Matrix

3-228

Temperature Conversion

Purpose
Library
Description

R —* b

Dialog Box

Inputs and
Outputs

Convert from temperature units to desired temperature units

Utilities/Unit Conversions

The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units and
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units
selected from the Initial units and the Final units pop-up menus.

Block Parameters: Temperature Conversio

— Temperature Conversion [mask)] [link]

Convert unitz of input signal to desired output units,

=

Initial units: I =1

Final units: I K

[
[

QK | Cancel | Help I

Apply

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

K Degrees Kelvin

F Degrees Fahrenheit
C Degrees Celsius

R Degrees Rankine

The input is the temperature in initial temperature units.

The output is the temperature in final temperature units.

3-229

Temperature Conversion

See Also

3-230

Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion

Turbofan Engine System

Purpose
Library

Description

Thrattle position Thrust (N}
hach

Altitude (m) Fuel flow gis)

Implement a first-order representation of a turbofan engine with controller
Propulsion

The Turbofan Engine System block computes the thrust and the weight of fuel
flow of a turbofan engine and controller at a specific throttle position, Mach
number, and altitude.

This system is represented by a first-order system with unitless heuristic
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine
time constant. For the lookup table data, thrust is a function of throttle position
and Mach number, TSFC is a function of thrust and Mach number, and engine
time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio 6 and relative
temperature ratio 6, and scaled by Maximum sea level static thrust, Fastest
engine time constant at sea level static, Sea level static thrust specific fuel
consumption, and Ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units
selected from the Units pop-up menu.

3-231

Turbofan Engine System

Dialog Box

Block Parameters: Turbofan Engine System #

r— Turbofan Engine System [mask)] [link]

Implement a turbofan engine spstem. The tutbofan engine system includes
bath engine and contraller.

Thrattle position can wary from zero to one, coresponding to no ta full
throttle. Altitude, initial thrust, and maximum thrust are entered in the same
unit system az selected from the block for thrust and fuel flow output.

=

: "

Urits: | Metric (MKS) =
Initial thrust source: I Internal j
Initial thrust:

ol

M arimum sea-level static thrust:
45000

Fastest engine time constant at sea-level static [zec):
1
Sealevel static thrust specific fuel consumption:
joss

R atio of installed thrust to uninstalled thrust:
jos

QK I Cancel Help Apply

Units

Specifies the input and output units:

Altitude Thrust Fuel Flow
Metric (MKS) Meters Newtons Kilograms per second
English Feet Pound force Pound mass per second

Initial thrust source

Specifies the source of initial thrust:

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.

3-232

Turbofan Engine System

Inputs and
Outputs

Assumptions
and Limitations

References

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Fatest engine time at sea level.

Sea-level static thrust specific fuel consumption

Thrust specific fuel consumption at sea level, at Mach = 0, and at maximum
thrust, in specified mass units per hour per specified thrust units.

Ratio of installed thrust to uninstalled thrust

Coefficient representing the loss in thrust due to engine installation.
The first input is the throttle position. Throttle position can vary from zero to
one, corresponding to no to full throttle.
The second input is the Mach number.
The third input is the altitude in specified length units.
The first output is the thrust in specified force units.

The second output is the fuel flow in specified mass units per second.

The atmosphere is at standard day conditions and an ideal gas.

The Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used
as a reference model.

“Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney,
August, 1986.

Raymer, D. P., “Aircraft Design: A Conceptual Approach,” AIAA Education
Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, “Mechanics and Thermodynamics of
Propulsion,” Addison-Wesley Publishing Company, Reading, MA, 1970.

3-233

Velocity Conversion

Purpose Convert from velocity units to desired velocity units
Library Utilities/Unit Conversions
Description The Velocity Conversion block computes the conversion factor from specified

fiz mi's

input velocity units to specified output velocity units and applies the
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected
from the Initial units and the Final units pop-up menus.

Dialog Box

Block Parameters: Yelocity Conversion #

—Welocity Conversion [mazk) (link]

Convert unitz of input signal to desired output units,

=
F

Initial urits: I ftis

Final units: I ds

[
[

QK | Cancel | Help I Apply |

Initial units

Specifies the input units.

Final units

Specifies the output units.

The following conversion units are available:

m/s
ft/s
km/s
in/s
km/h
mph
kts

3-234

Meters per second
Feet per second
Kilometers per second
Inches per second
Kilometers per hour
Miles per hour

Nautical miles per hour

Velocity Conversion

Inputs and The input is the velocity in initial velocity units.
Outputs

The output is the velocity in final velocity units.

See Also Acceleration Conversion
Angle Conversion
Angular Acceleration Conversion
Angular Velocity Conversion
Density Conversion
Force Conversion
Length Conversion
Mass Conversion
Pressure Conversion

Temperature Conversion

3-235

Von Karman Wind Turbulence Model (Continuous)

Purpose

Library

Description

b {r)
W (s

DSt

Gontinuous
Viirg M1

Won Kaman ¢ jradis)
gy

3-236

Generate continuous wind turbulence with the Von Karman velocity spectra
Environment/Wind

TheVon Karman Wind Turbulence Model (Continuous) block uses the Von
Karman spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters. This
block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Q radians per meter, the circular
frequency o is calculated by multiplying V by Q. The following table displays
the component spectra functions:

MIL-F-8785C MIL-HDBK-1797
Longitudinal
2csu2Lu 1 20u2Lu 1
P, (w) . .
25/6 T ,.25/6
[1+(1.339L,2)"] [1+(1.339L,3)]
1 1
nl N3 3
o2 08() 2 0.8(27[1"”)3
VL, |, (%bo 2VL, (4bw)2
nV TV

Von Karman Wind Turbulence Model (Continuous)

MIL-F-8785C MIL-HDBK-1797
Lateral
2 1+3(1.339L 2)° 2 1+2(2.678L. 2)°
o L, 1*3(1.339L,7) 20,L, 1+3(2678L,y)
P, (o) ' 2 11/6 n —5.11/6
[1+(1.339L,2)°] [1+(2.678L,2)"]
2 2
_[® 0)
o iz
Vv
(@) — 70,0 Ve ()
1+ (2)° e (2o
nV + VvV
Vertical

8 or 2
o L, 1+ §(1.339va) 2
D, (o) .

21
[1+(1.339L,,2)"]

8 0.2
I 1+5(2.678L,,3)

1/6 1/6

21
[1+(2.678L,,2)"]

)? ®)?
D, (@) i(l/z e i(V) 0 (0)
1+ (%) 1+ (5%

The variable b represents the aircraft wingspan. The variables L ,L ,L

represent the turbulence scale lengths. The variables ¢, 6, 5,, represent the
turbulence intensities.

3-237

Von Karman Wind Turbulence Model (Continuous)

3-238

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

8 6y g ox g ox
0 0
P, = ﬂg q, = awg r. = lg
g Oy g Ox g 0x
ow ow ov
- __"8 =__£ = £
Pg = dy g ox e T o

The variations affect only the vertical (q) and lateral (ry) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, GDP((D) ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

@, (»), multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

Vertical Lateral
<Dq(m) -0, (w)
D (0) (o)
D (@) (o)

To generate a signal with the correct characteristics, a unit variance,

band-limited white noise signal is passed through forming filters. The forming
filters are approximations of the Von Karman velocity spectra which are valid
in a range of normalized frequencies of less than 50 radians. These filters can

Von Karman Wind Turbulence Model (Continuous)

be found in both the Military Handbook MIL-HDBK-1797 and the reference by
Ly and Chan.

The following table displays the transfer functions:

MIL-F-8785C/MIL-HDBK-1797

Longitudinal
o 1 0asts
H(5) 5, Y(+0.257i) :
1+1.357-%s +0.1987(<%) s
(T 1/6
H,(s) . [oB)
YNV 13 4b
Lw (1+(“T‘t—)s)
Lateral
i? L L 29
o, (1+2.7478<Fs + 0.3398(5%) s*)
H(s) Y
L L 29 L 33
1+2.9958¢s + 1.9754(<%) s” +0.1539(5%) s
$§
v
Hr(s) (Sb\)\) HU(S)
(1+ Tl',_ S

3-239

Von Karman Wind Turbulence Model (Continuous)

MIL-F-8785C/MIL-HDBK-1797

Vertical
L L L 29
Sy —VE(1+2.74787“’3+0.3398(7’”) s7)
Hw(S) L L 29 L 3 3
1+2.99587’”s+ 1.9754(<7) s~ +0.1539(~7) s
— Y H (s
(@)
1A%

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The Von Kdrman filter references refer to the same velocity transfer
functions for both military specifications. The turbulence scale lengths
changes between military references have not impacted the form of the
turbulence velocity transfer functions.

Low-Altitude Model (Altitude < 1000 feet)

According to the military references, the turbulence scale lengths at low
altitudes, where 4 is the altitude in feet, are represented in the following table:

MIL-F-8785C MIL-HDBK-1797

L,=h oL, = h

L,=L,= h — L,=2L,= h =
(0.177 + 0.000823h) " (0.177 +0.000823h) "

The turbulence intensities are given below, where W, is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15

3-240

Von Karman Wind Turbulence Model (Continuous)

knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

G, = 0.1W,,

w

Ou _ % _ 1

Sw Ow (0.177 +0.000823h)%*

The turbulence axes orientation in this region is defined as follows:

* Longitudinal turbulence velocity, u,, aligned along the horizontal relative
mean wind vector

® Vertical turbulence velocity, w,, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)

For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

MIL-F-8785C MIL-HDBK-1797

L,=L,=L, =250 ft L, = 2L, = 2L, = 2500 ft

u

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

Gu=GU=Gw

3-241

Von Karman Wind Turbulence Model (Continuous)

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates:

Medium/High Altitude Turbulence Intensities (Probability of Exceedance)

N

"Severe"
108

80

70

o @
=] =]
T

ig4
"Moderate" 7

SLight'
1 -2
20

2% -1 //

—

0 5 10 15 20 25 30 35
RMS Turbulence Amplitude [ft/sec]

Altitude, thousands of feet
w B
o o
=
&

-

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)

At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

3-242

Von Karman Wind Turbulence Model (Continuous)

|

Dialog Box

) Block Parameters: Yon Karman Wind Turbulence Model {Continuous (+q +r}) ﬂﬂ

—'wind Turbulence Model [mask] (link]

Generate atmosphenc burbulence. White noise it passed through 4 filter to give the turbulence the specified velacity spectra,

Mediumshigh altitude scale lengths from the specifications are 762 m (2500 ft) for Yon Karman turbulence and 533.4 m [1750 it] for Divden tubulence.

Urits: [Metic (MKS] = |
Specification: IMH_-F-B?SEC ﬂ
odel bype: I Continuous Yon Karman [+g +| ﬂ

“Wind speed at B m defines the low-altitude intengity (més]:

|18

‘Wind direction at 6 m [degiees clockwise from naorth]:

Jo

Probability of exceedance of high-altituds intensity: I 102 - Light ;I

Scale length at medium/high altitudes (m):
[762

‘Wingzpan [m]:
[10

Band limited noise sample time (sec):

Jo1

Noise seeds [ug vg wa paf
|[233=11 23342 23343 23344]

¥ Tubulence on

aK Cancel Help Lpply

Units

Define the units of wind speed due to the turbulence.

Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second
English Feet/second Feet Feet/second
(Velocity in
ft/s)
English Knots Feet Knots
(Velocity in
kts)

3-243

Von Karman Wind Turbulence Model (Continuous)

3-244

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Model Description

Continuous Von Karman (+q -r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Karman (+q +r) Use continuous representation of Von
Karman velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Karman (-q +r) Use continuous representation of Von
Karman velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Von Karman Wind Turbulence Model (Continuous)

Model Description

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

The Continuous Von Karman selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity

The measured wind speed at a height of 20 feet (6 meters) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)

The measured wind direction at a height of 20 feet (6 meters) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity

Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes

The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

3-245

Von Karman Wind Turbulence Model (Continuous)

Inputs and
Outputs

Assumptions
and Limitations

3-246

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated.

Noise seeds

There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

The first input is the altitude in units selected.
The second input is the aircraft speed in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, are small
relative to the aircraft’s ground speed.

Von Karman Wind Turbulence Model (Continuous)

References

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

® Terrain roughness

® Lapse rate

® Wind shears

® Mean wind magnitude

¢ Other meteorological factions (except altitude)

U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., “Gust Loads on Aircraft: Concepts and Applications,” ATAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at

NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARYV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

3-247

Von Karman Wind Turbulence Model (Continuous)

See Also Dryden Wind Turbulence Model (Continuous)
Dryden Wind Turbulence Model (Discrete)
Discrete Wind Gust Model
Wind Shear Model

3-248

WGS84 Gravity Mo

del

Purpose

Library

Description

h(m)
iES2g
(Taylor Series)

g (mis)
Lattdeq)

Dialog Box

Implement the 1984 World Geodetic System (WGS84) representation of Earth’s
gravity

Environment/Gravity

The WGS84 Gravity Model block implements the mathematical representation
of the geocentric equipotential ellipsoid of the World Geodetic System
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity
precision is controlled via Type of gravity model.

The WGS84 Gravity Model block icon displays the input and output units
selected from the Units pop-up menu.

):Block Parameters: WGS84 Gravity Model 2

[~ WGS54 Gravity Model (mask] (link)

Caleulate Earth's gravity at a specifc location using World Geodetic System MWGS 84]

The WG5S 84 model is defined a tential elipsoid. This madel can be found in NIMA TRE350 2, “Department of Defense '/ orld Gendetic: System 1384, Its Definition and Relationship with Local Geodstic Systems "

Height is entered in the same urit spstem as selested for gravity. Latitude and longituds (f requited) are sntered in degress:

Type of giavity model |

Units: [Metric IMKS)

Action for out of ange input: [waming =

oK. Cancel Help Apply

Type of gravity model
Specifies the method to calculate gravity:

=WGS84 Taylor Series

=WGS84 Close Approximation
=WGS84 Exact

3-249

WGS84 Gravity Model

Units
Specifies the input and output units:
Height Gravity
Metric (MKS) Meters Meters per second squared
English Feet Feet per second squared

Exclude Earth’s atmosphere
Select for the value for the Earth’s gravitational field to exclude the mass
of the atmosphere.

Clear for the value for the Earth’s gravitational field to include the mass of
the atmosphere.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the
International Astronomical Union (IAU) value of the Earth’s angular
velocity and the precession rate in right ascension. In order to obtain the
precession rate in right ascension, Julian Centuries from Epoch J2000.0 is
calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the
standard Earth rotating at a constant angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian Centuries from Epoch
J2000.0.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference frame
is selected.

Day
Specifies the day used to calculate Julian Centuries from Epoch J2000.0.

3-250

WGS84 Gravity Model

Inputs and
Outputs

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference frame
is selected.

Year

Specifies the year used to calculate Julian Centuries from Epoch J2000.0.
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference frame
is selected.

No centrifugal effects

When selected, calculated gravity is based on pure attraction resulting
from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Action for out of range input

Specify if out of range input invokes a warning, error, or no action.
The first input is a vector containing altitudes in specified length units.
The second input is a vector containing latitudes in degrees.

The third input is a vector containing longitudes in degrees. This input is only
available with Type of Gravity Model WGS84 Close Approximation or WGS84
Exact.

The output is a vector containing gravities in specified acceleration units.

3-251

WGS84 Gravity Model

Assumptions
and Limitations

Examples

References

3-252

The WGS84 gravity calculations are based on the assumption of a geocentric
equipotential ellipsoid of revolution. Since the gravity potential is assumed to
be the same everywhere on the ellipsoid, there must be a specific theoretical
gravity potential that can be uniquely determined from the four independent
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is not
necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic
height of 20000.0 m (approximately 65620.0 feet). Below this height, it gives
results with submicrogal precision.

See Airframe in the aeroblk HL20 model for an example of this block.

[1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its
Definition and Relationship with Local Geodetic Systems.”

Wind Shear Model

Purpose

Library

Description

h im)

(=i}

—
—

Shear

Vg 1)

Calculate wind shear conditions
Environment/Wind

The Wind Shear Model block adds wind shear to the aerospace model. This
implementation is based on the mathematical representation in the Military
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and
the measured wind speed at 20 feet (6 m) above the ground.

h{fﬂ)

3ft < h < 1000t

where u, is the mean wind speed, Wy is the measured wind speed at an
altitude of 20 feet, % is the altitude, and z, is a constant equal to 0.15 feet for
Category C flight phases and 2.0 feet for all other flight phases. Category C
flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to
body-fixed axis coordinates by multiplying by the direction cosine matrix
(DCM) input to the block. The block output is the mean wind speed in the
body-fixed axis.

3-253

Wind Shear Model

Dialog Box

Block Parameters: Wind Shear Model |
—wind Shear Model [mazk] (link]

Calculate the wind shear from conditions measured at a height of B meters
[20 feet] above the ground.

=

Urits: | Metric (MKS)

Flight phase: IEategory C - Terminal Flight Phaze j
‘Wind speed at B m altitude [m/z):
|15

‘wind direction at & m altitude [degrees clockwize from north]:
jo

QK | Cancel | Help I Apply

Units

Define the units of wind shear.

Wind Altitude
Metric (MKS) Meters/second Meters

English Feet/second Feet
(Velocity in
ft/s)

English Knots Feet
(Velocity in
kts)

Flight phase
Select flight phase:
=Category C Terminal Flight Phases
=0ther
Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)
The measured wind speed at an altitude of 20 feet (6 m) above the ground.

3-254

Wind Shear Model

Inputs and

Outputs

Examples

References

See Also

Wind direction at 6 m (20 feet) altitude (degrees clockwise from north)

The direction of the wind at an altitude of 20 feet (6 m), measured in
degrees clockwise from the direction of the Earth x-axis (north). The wind
direction is defined as the direction from which the wind is coming.

The first input is the altitude in units selected.
The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame,
in the selected units.

See the Airframe subsystem in the aeroblk HL20 model for an example of this
block.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Discrete Wind Gust Model
Dryden Wind Turbulence Model (Continuous)

3-255

World Magnetic Model 2000

Purpose

Library

Description

Height (m) Wiagnetic Field (nT)
Horizonal Intensity (n Ty
Latitude (deg)
Daclination (d2g)
Longitude (deg)
Inclination (deg)

Decimal Year

Tatal Intensity (nT)

World Magnetic Model 2000

Dialog Box

3-256

Calculate the Earth’s magnetic field at a specific location and time using the
World Magnetic Model 2000 (WMM2000) block.

Environment/Gravity

The WMM2000 block implements the mathematical representation of the
National Imagery and Mapping Agency (NIMA) World Magnetic Model 2000.
The WMM2000 block calculates the Earth’s magnetic field vector, horizontal
intensity, declination, inclination, and total intensity at a specified location
and time.

Block Parameters: World Magnetic Model #
—'world Magnetic Maodel 2000 [mask] [link]
Calculate the E arth's magnetic field at a specific location and time uzing

the "wforld Magnetic Model [whdkd). This model iz valid for the year 2000
through the year 2005,

The 'whM-2000 can be found on the web at
hitp: # Awmm. ngde. noaa. gov/D oDk, shtml and in "Eritish Geological
Survey, Technical Report 'Wh/00/17R, Geomagnetism Series".

Height iz entered in length units of selected unit system. Latitude and
longitude are entered in degrees.

=

Urits: | Metric (MKS)

[
[Input decimal pear
Moth: IJanuary j
oo [=
Year: |2000 |
Action for out of range input: | Error j

¥ Output horizontal intenszity
¥ Output declination

¥ Output inclination

¥ Output total intenzity

QK I Cancel Help Apply

World Magnetic Model 2000

Inputs and
Outputs

Units
Specifies the input and output units:
Height Magnetic Field Horizontal Intensity Total Intensity
Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

Input decimal year
When selected, the decimal year is an input for the World Magnetic Model

2000 block. Otherwise, a date must be specified using the dialog
parameters of Month, Day, and Year.
Month
Specifies the month used to calculate decimal year.
Day
Specifies the day used to calculate decimal year.
Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination

When selected, the declination, the angle between true north and the
magnetic field vector (positive eastwards), is output.

Output inclination

When selected, the inclination, the angle between the horizontal plane and
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

The first input is the height, in selected units.

3-257

World Magnetic Model 2000

Limitations

References

3-258

The second input is the latitude in degrees.

The third input is the longitude in degrees.

The fourth optional input is the decimal year.

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.

The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.

The WMM2000 specification produces data that is reliable five years after the
epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local time
or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth's core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the mantle
and crust), are not included. Also, the substantial fluctuations of the
geomagnetic field, which occur constantly during magnetic storms and almost
constantly in the disturbance field (auroral zones), are not included.

Macmillian, S. and J. M. Quinn, 2000. The Derivation of the World Magnetic
Model 2000, British Geological Survey Technical Report WM/00/17R.

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM. shtml

A

Acceleration Conversion block 4-76
Actuators library 2-2

Adjoint of 3x3 Matrix block 4-78
Aerodynamic Forces and Moments block 4-80
Aerodynamics library 2-2

Angle Conversion block 4-82

Angular Acceleration Conversion block 4-84
Angular Velocity Conversion block 4-86
Animation library 2-2

C
Calculate Range block 4-88

COESA Atmosphere Model block 4-89

Create 3x3 Matrix block 4-92

creating an aerospace model

basic steps 2-5

Custom Variable Mass 3DoF (Body Axes) block
4-94

Custom Variable Mass 6DoF (Euler Angles) block
4-99

Custom Variable Mass 6DoF (Quaternion) block
4-105

D

Density Conversion block 4-110

Determinant of 3x3 Matrix block 4-112

Direction Cosine Matrix to Euler Angles block
4-113

Direction Cosine Matrix to Quaternions block
4-115

Discrete Wind Gust Model block 4-117

Dryden Wind Turbulence Model (Continuous)
block 4-120

Dryden Wind Turbulence Model (Discrete) block
4-133
Dynamic Pressure block 4-145

E
Environment library 2-2
Atmosphere sublibrary 2-2
Gravity sublibrary 2-3
Wind sublibrary 2-3
Equations of Motion library 2-3
3DoF sublibrary 2-3
6DoF sublibrary 2-3
Estimate Center of Gravity block 4-146
Estimate Inertia Tensor block 4-148
Euler Angles to Direction Cosine Matrix block
4-150
Euler Angles to Quaternions block 4-152

F
Flight Parameters library 2-3

Force Conversion block 4-154

G
Gain Scheduled Lead-Lag block 4-156

GNC Library
Control sublibrary 2-3
Guidance sublibrary 2-4

H
Horizontal Wind Model block 4-157

I1

Index

I-2

I
Ideal Airspeed Correction block 4-159

Incidence & Airspeed block 4-162
Incidence, Sideslip & Airspeed block 4-163
Interpolate Matrix(x) block 4-165
Interpolate Matrix(x,y) block 4-167
Interpolate Matrix(x,y,z) block 4-169
Invert 3x3 Matrix block 4-172

ISA Atmosphere Model block 4-173

L
Lapse Rate Model block 4-174

Length Conversion block 4-178

M
Mach Number block 4-180

Mass Conversion block 4-181
Mass Properties library 2-4
Matlab
opening demos
using the command line 1-10
using the Start button 1-10
M-files
running simulations from 2-16
missile guidance system 3-2

Moments about CG due to Forces block 4-183

N
Non-Standard Day 210C block 4-184

Non-Standard Day 310 block 4-188

(0

Controllers

1D Controller [A(v),B(v),C(v),D(v)] block 4-14

1D Controller [A(v),B(v),C(v),D(v)] block 4-14

1D Controller Blend u=(1-L).K1.y+L.K2.y block
4-17

1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
4-20

1D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-23

P

parameters

tuning 2-16
Pressure Altitude block 4-192
Pressure Conversion block 4-194
Propulsion library 2-4

Q

Quaternions to Direction Cosine Matrix block
4-196
Quaternions to Euler Angles block 4-198

R
Relative Ratio block 4-200

Second Order Linear Actuator block 4-202

Second Order Nonlinear Actuator block 4-203

Self-Conditioned [A,B,C,D] block 4-205

Simple Variable Mass 3DoF (Body Axes) block
4-209

Simple Variable Mass 6DoF (Euler Angles) block
4-215

Index

Simple Variable Mass 6DoF (Quaternion) block
4-221
simulations
running from M-file 2-16
Simulink
block libraries 1-5
modifying models 1-17
opening demos
using the Help browser 1-9
opening the Aerospace Blockset 1-5
running demos 1-14
using the Simulink Library Browser in
Microsoft Windows 1-5
using the Simulink Library window in UNIX
1-8
SinCos block 4-227
6DoF (Euler Angles) block 4-65
6DoF Animation block 4-63
Symmetric Inertia Tensor block 4-228

T

Temperature Conversion block 4-229

3x3 Cross Product block 4-62

3D Controller [A(v),B(v),C(v),D(v)] block 4-42

3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
4-46

3D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-50

3DoF (Body Axes) block 4-57

3DoF Animation block 4-54

tuning parameters 2-16

Turbofan Engine System block 4-231

2D Controller [A(v),B(v),C(v),D(v)] block 4-27

2D Controller Blend block 4-30

2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block
4-34

2D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-38

U

Utilities library 2-4
Axes Transformation sublibrary 2-4
Math Operations sublibrary 2-4
Unit Conversions sublibrary 2-4

\'
Velocity Conversion block 4-234

Virtual Reality Toolbox 1-4
Von Kdarman Wind Turbulence Model
(Continuous) block 4-236

w
WGS84 Gravity Model block 4-249

Wind Shear Model block 4-253
World Magnetic Model 2000 block 4-256

I-3

Index

I-4

	Using This Guide
	Using This Guide
	Ways to Get Help Online
	For Further Help and Feedback

	Typographical Conventions
	Aerospace Units

	Introducing the Aerospace Blockset
	Welcome to the Aerospace Blockset
	What’s in This Chapter

	Related Products
	Opening the Aerospace Blockset in Simulink
	Opening the Aerospace Blockset on Windows Platforms
	Opening the Aerospace Blockset on UNIX Platforms

	Running a Demo Model
	What This Demo Illustrates
	Opening the Model
	Running the Demo
	Modifying the Model

	Getting Started with the Aerospace Blockset
	Introducing the Aerospace Blockset Libraries
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Equations of Motion Library
	Flight Parameters Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Creating Aerospace Models
	Building a Simple Actuator System
	Building the Model
	Running the Simulation

	Case Studies
	Missile Guidance System
	Missile Guidance System Model
	Modeling Airframe Dynamics
	Modeling a Classical Three-Loop Autopilot
	Modeling the Homing Guidance Loop
	Simulating the Missile Guidance System
	Extending the Model
	References

	NASA HL-20 Lifting Body Airframe
	NASA HL-20 Lifting Body
	The HL-20 Airframe Model
	References

	Ideal Airspeed Correction
	Airspeed Correction Models
	Measuring Airspeed
	Modeling Airspeed Correction
	Simulating Airspeed Correction

	Block Reference
	Blocks — By Category
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Flight Parameters Library
	Equations of Motion Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Blocks — Alphabetical List
	1D Controller [A(v),B(v),C(v),D(v)]
	1D Controller Blend u=(1-L).K1.y+L.K2.y
	1D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	1D Self-Conditioned [A(v),B(v),C(v),D(v)]
	2D Controller [A(v),B(v),C(v),D(v)]
	2D Controller Blend
	2D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	2D Self-Conditioned [A(v),B(v),C(v),D(v)]
	3D Controller [A(v),B(v),C(v),D(v)]
	3D Observer Form [A(v),B(v),C(v),F(v),H(v)]
	3D Self-Conditioned [A(v),B(v),C(v),D(v)]
	3DoF Animation
	3DoF (Body Axes)
	3x3 Cross Product
	6DoF Animation
	6DoF (Euler Angles)
	6DoF (Quaternion)
	Acceleration Conversion
	Adjoint of 3x3 Matrix
	Aerodynamic Forces and Moments
	Angle Conversion
	Angular Acceleration Conversion
	Angular Velocity Conversion
	Calculate Range
	COESA Atmosphere Model
	Create 3x3 Matrix
	Custom Variable Mass 3DoF (Body Axes)
	Custom Variable Mass 6DoF (Euler Angles)
	Custom Variable Mass 6DoF (Quaternion)
	Density Conversion
	Determinant of 3x3 Matrix
	Direction Cosine Matrix to Euler Angles
	Direction Cosine Matrix to Quaternions
	Discrete Wind Gust Model
	Dryden Wind Turbulence Model (Continuous)
	Dryden Wind Turbulence Model (Discrete)
	Dynamic Pressure
	Estimate Center of Gravity
	Estimate Inertia Tensor
	Euler Angles to Direction Cosine Matrix
	Euler Angles to Quaternions
	Force Conversion
	Gain Scheduled Lead-Lag
	Horizontal Wind Model
	Ideal Airspeed Correction
	Incidence & Airspeed
	Incidence, Sideslip & Airspeed
	Interpolate Matrix(x)
	Interpolate Matrix(x,y)
	Interpolate Matrix(x,y,z)
	Invert 3x3 Matrix
	ISA Atmosphere Model
	Lapse Rate Model
	Length Conversion
	Mach Number
	Mass Conversion
	Moments About CG Due to Forces
	Non-Standard Day 210C
	Non-Standard Day 310
	Pressure Altitude
	Pressure Conversion
	Quaternions to Direction Cosine Matrix
	Quaternions to Euler Angles
	Relative Ratio
	Second Order Linear Actuator
	Second Order Nonlinear Actuator
	Self-Conditioned [A,B,C,D]
	Simple Variable Mass 3DoF (Body Axes)
	Simple Variable Mass 6DoF (Euler Angles)
	Simple Variable Mass 6DoF (Quaternion)
	SinCos
	Symmetric Inertia Tensor
	Temperature Conversion
	Turbofan Engine System
	Velocity Conversion
	Von Karman Wind Turbulence Model (Continuous)
	WGS84 Gravity Model
	Wind Shear Model
	World Magnetic Model 2000

	Index

